中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
設函數f(x)=
2x2+2xx2+1
,函數g(x)=ax2+5x-2a.
(1)求f(x)在[0,1]上的值域;
(2)若對于任意x1∈[0,1],總存在x0∈[0,1],使得g(x0)=f(x1)成立,求a的取值范圍.
分析:對于(1)有函數式化簡后用換元法求值域.
對于(2)由題意可知對于任意x1∈[0,1],總存在x0∈[0,1],使得g(x0)=f(x1)成立,等價于f(x)的值域[0,2]是函數y=g(x)在x∈[0,1]的值域的子集.
解答:解:(1)y=
2x2+2x
x2+1
=
2(x2+1)+2x-2
x2+1
=2+
2(x-1)
x2+1

令x-1=t,則x=t+1,t∈[-1,0],y=2+
2t
t2+2t+2

當t=0時,y=2;當t∈[-1,0),y=2+
2
t+
2
t
+2

由對勾函數的單調性得y∈[0,2),故函數在[0,1]上的值域是[0,2];
(2)f(x)的值域是[0,2],要g(x0)=f(x1)成立,則[0,2]⊆{y|y=g(x),x∈[0,1]}
①當a=0時,x∈[0,1],g(x)=5x∈[0,5],符合題意;
②當a>0時,函數g(x)的對稱軸為x=-
5
2a
<0,故當x∈[0,1]時,函數為增函數,則g(x)的值域是[-2a,5-a],由條件知[0,2]⊆[-2a,5-a],∴
a>0
-2a≤0
5-a≥2
?0<a≤3;
③當a<0時,函數g(x)的對稱軸為x=-
5
2a
>0.
當0<-
5
2a
<1,即a<-
5
2
時,g(x)的值域是[-2a,
-8a2-25
4a
]或[5-a,
-8a2-25
4a
],
由-2a>0,5-a>0知,此時不合題意;當-
5
2a
≥1,即-
5
2
≤a<0時,g(x)的值域是[-2a,5-a],
由[0,2]⊆[-2a,5-a]知,由-2a>0知,此時不合題意.
綜合①②③得0≤a≤3.
點評:此題(1)考查考查了有解析式選擇換元法求函數值域.
此題(2)考查了等價轉化思想及判斷含有字母參數集合關系時分類討論的思想.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

2、設函數f(x)=2x+3,g(x)=3x-5,則f(g(1))=
-1

查看答案和解析>>

科目:高中數學 來源: 題型:

給定實數a(a≠
12
),設函數f(x)=2x+(1-2a)ln(x+a)(x>-a,x∈R),f(x)的導數f′(x)的圖象為C1,C1關于直線y=x對稱的圖象記為C2
(Ⅰ)求函數y=f′(x)的單調區間;
(Ⅱ)對于所有整數a(a≠-2),C1與C2是否存在縱坐標和橫坐標都是整數的公共點?若存在,請求出公共點的坐標;若不若存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=
(2x+1)(3x+a)
x
為奇函數,則a=
-
3
2
-
3
2

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=2x+x-4,則方程f(x)=0一定存在根的區間為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=
-2x+m2x+n
(m、n為常數,且m∈R+,n∈R).
(Ⅰ)當m=2,n=2時,證明函數f(x)不是奇函數;
(Ⅱ)若f(x)是奇函數,求出m、n的值,并判斷此時函數f(x)的單調性.

查看答案和解析>>

同步練習冊答案