中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
(2012•溫州一模)若實數x,y滿足約束件
x+y-1≤0
x-y+1≥0
y+1≥0
將一顆骰子投擲兩次得到的點數分別為a,b,則函數z=2ax+by在點(2,-1)處取得最大值的概率為
5
6
5
6
分析:利用古典概型概率計算公式,先計算總的基本事件數N,再計算事件函數z=2ax+by在點(2,-1)處取得最大值時包含的基本事件數n,最后即可求出事件發生的概率.
解答:解:畫出不等式組
x+y-1≤0
x-y+1≥0
y+1≥0
表示的平面區域,
∵函數z=2ax+by在點(2,-1)處取得最大值,
∴直線z=2ax+by的斜率k=-
2a
b
≤-1,即2a≥b.
∵一顆骰子投擲兩次分別得到點數為(a,b),則這樣的有序整數對共有6×6=36個
其中2a≤b的有(1,1),(1,2),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)共30個
則函數z=2ax+by在點(2,-1)處取得最大值的概率為
30
36
=
5
6

故答案為
5
6
點評:本題考查了古典概型概率的計算方法,乘法計數原理,分類計數原理,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•溫州一模)已知函數f(x)滿足f(x)=2f(
1
x
)
,當x∈[1,3]時,f(x)=lnx,若在區間[
1
3
,3]
內,函數g(x)=f(x)-ax,有三個不同的零點,則實數a的取值范圍是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•溫州一模)如圖,在矩形ABCD中,AB=8,BC=4,E,F,G,H分別為四邊的中點,且都在坐標軸上,設
OP
OF
CQ
CF
(λ≠0).
(Ⅰ)求直線EP與GQ的交點M的軌跡Γ的方程;
(Ⅱ)過圓x2+y2=r2(0<r<2)上一點N作圓的切線與軌跡Γ交于S,T兩點,若
NS
NT
+r2=0
,試求出r的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•溫州一模)如圖,在△ABC中,AD⊥BC,垂足為D,且BD:DC:AD=2:3:6.
(Ⅰ)求∠BAC的大小;
(Ⅱ)設E為AB的中點,已知△ABC的面積為15,求CE的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•溫州一模)某高校進行自主招生面試時的程序如下:共設3道題,每道題答對給10分、答錯倒扣5分(每道題都必須回答,但相互不影響).設某學生對每道題答對的概率都為
23
,則該學生在面試時得分的期望值為
15
15
分.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•溫州一模)若圓x2+y2-4x+2my+m+6=0與y軸的兩個交點A,B位于原點的同側,則實數m的取值范圍是(  )

查看答案和解析>>

同步練習冊答案