中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
對于函數f(x)=1-2cos2(x+
π
4
)-
3
cos2x
,給出下列四個命題:
(1)函數在區間[
12
11π
12
]
上是減函數;
(2)直線x=
π
6
是函數圖象的一條對稱軸;
(3)函數f(x)的圖象可由函數y=2sin2x的圖象向右平移
π
3
而得到;
(4)若 R,則f(x)=f(2-x),且的值域是[-
3
,2]

其中正確命題的個數是(  )
A.1B.2C.3D.4
f(x)=1-2cos2(x+
π
4
)-
3
cos2x

=-cos(2x+
π
2
)-
3
cos2x

=sin2x-
3
cos2x

=2sin(2x-
π
3
),
所以:f(x)的減區間滿足:
π
2
+2kπ≤2x-
π
3
2
+2kπ
,k∈Z,
解得f(x)的減區間是[
5
12
π+kπ
11π
12
+kπ
],k∈Z,
故函數在區間[
12
11π
12
]
上是減函數,即(1)正確;
f(x)的對稱軸方程滿足:2x-
π
3
=kπ+
π
2
,k∈Z,
即x=
2
+
12
,k∈Z,
故直線x=
π
6
不是函數圖象的一條對稱軸,即(2)不正確;
函數y=2sin2x的圖象向右平移
π
3
得到y=2sin(2x-
3
)≠2sin(2x-
π
3
),故(3)不正確;
f(x)≠f(2-x),故(4)不正確.
故選A.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

對于函數f(x)=
x1+|x|
 (x∈R)
,下列判斷中,正確結論的序號是
①②
①②
(請寫出所有正確結論的序號).
①f(-x)+f(x)=0;      
②當m∈(0,1)時,方程f(x)=m總有實數解;
③函數f(x)的值域為R;   
④函數f(x)的單調減區間為(-∞,+∞).

查看答案和解析>>

科目:高中數學 來源: 題型:

對于函數f(x)=1-2cos2(x+
π
4
)-
3
cos2x
,給出下列四個命題:
(1)函數在區間[
12
11π
12
]
上是減函數;
(2)直線x=
π
6
是函數圖象的一條對稱軸;
(3)函數f(x)的圖象可由函數y=2sin2x的圖象向右平移
π
3
而得到;
(4)若 R,則f(x)=f(2-x),且的值域是[-
3
,2]

其中正確命題的個數是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

對于“函數f(x)=
1
-x2+2x+3
是否存在最值的問題”,你認為以下四種說法中正確的是(  )

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

對于“函數f(x)=
1
-x2+2x+3
是否存在最值的問題”,你認為以下四種說法中正確的是(  )
A.有最大值也有最小值B.無最大值也無最小值
C.有最大值而無最小值D.無最大值而有最小值

查看答案和解析>>

同步練習冊答案