(本小題滿分15分)
給定橢圓C:
,稱圓心在原點(diǎn)O、半徑是
的圓為橢圓C的“準(zhǔn)圓”.已知橢圓C的一個(gè)焦點(diǎn)為
,其短軸的一個(gè)端點(diǎn)到點(diǎn)
的距離為
.
(1)求橢圓C和其“準(zhǔn)圓”的方程;
(2)若點(diǎn)
是橢圓C的“準(zhǔn)圓”與
軸正半軸的交點(diǎn),
是橢圓C上的兩相異點(diǎn),且
軸,求
的取值范圍;
(3)在橢圓C的“準(zhǔn)圓”上任取一點(diǎn)
,過點(diǎn)
作直線
,使得
與橢圓C都只有一個(gè)交點(diǎn),試判斷
是否垂直?并說明理由.
(1)
.(2)
.(3)對(duì)于橢圓
上的任意點(diǎn)
,都有
.
【解析】
試題分析:(1)由題意知
,且
,可得
,
故橢圓C的方程為
,其“準(zhǔn)圓”方程為
.
(2)由題意,可設(shè)![]()
,則有
,
又A點(diǎn)坐標(biāo)為
,故
,
故![]()
,
又
,故
,
所以
的取值范圍是
.
(3)設(shè)
,則
.
當(dāng)
時(shí),
,則
其中之一斜率不存在,另一斜率為0,顯然有
.
當(dāng)
時(shí),設(shè)過
且與橢圓有一個(gè)公共點(diǎn)的直線
的斜率為
,
則
的方程為
,代入橢圓
方程可得
,即
,
由
,
可得
,其中
,
設(shè)
的斜率分別為
,則
是上述方程的兩個(gè)根,
故
,即
.
綜上可知,對(duì)于橢圓
上的任意點(diǎn)
,都有
.
考點(diǎn):本題主要考查圓的方程,直線與橢圓的位置關(guān)系,平面向量的坐標(biāo)運(yùn)算。
點(diǎn)評(píng):中檔題,曲線關(guān)系問題,往往通過聯(lián)立方程組,得到一元二次方程,運(yùn)用韋達(dá)定理。本題新定義了“準(zhǔn)圓”,解答時(shí)要注意審題,明確其特征。本題易漏“
其中之一斜率不存在,另一斜率為0,
的情況。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省高三上學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分15分)
已知函數(shù)![]()
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若
,試分別解答以下兩小題.
(ⅰ)若不等式
對(duì)任意的
恒成立,求實(shí)數(shù)
的取值范圍;
(ⅱ)若
是兩個(gè)不相等的正數(shù),且
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三下學(xué)期3月聯(lián)考理科數(shù)學(xué) 題型:解答題
(本小題滿分15分).
已知
、
分別為橢圓
:
的
上、下焦點(diǎn),其中
也是拋物線
:
的焦點(diǎn),
點(diǎn)
是
與
在第二象限的交點(diǎn),且
。
(Ⅰ)求橢圓的方程;
(Ⅱ)已知點(diǎn)P(1,3)和圓
:
,過點(diǎn)P的動(dòng)直線
與圓
相交于不同的兩點(diǎn)A,B,在線段AB取一點(diǎn)Q,滿足:
,
(
且
)。求證:點(diǎn)Q總在某定直線上。
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省高三上學(xué)期第三次月考數(shù)學(xué)文卷 題型:解答題
(本小題滿分15分)
如圖已知,橢圓
的左、右焦點(diǎn)分別為
、
,過
的直線
與橢圓相交于A、B兩點(diǎn)。
(Ⅰ)若
,且
,求橢圓的離心率;
(Ⅱ)若
求
的最大值和最小值。
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆浙江省寧波市高一上學(xué)期期末考試數(shù)學(xué) 題型:解答題
(本小題滿分15分)若函數(shù)
在定義域內(nèi)存在區(qū)間
,滿足
在
上的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052202033078124869/SYS201205220205036875888611_ST.files/image002.png">,則稱這樣的函數(shù)
為“優(yōu)美函數(shù)”.
(Ⅰ)判斷函數(shù)
是否為“優(yōu)美函數(shù)”?若是,求出
;若不是,說明理由;
(Ⅱ)若函數(shù)
為“優(yōu)美函數(shù)”,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年江蘇省高二下學(xué)期期中考試?yán)頂?shù) 題型:解答題
(本小題滿分15分)在5道題中有3道理科題和2道文科題,如果不放回地依次抽取2道題.求:
(1)第1次抽到理科題的概率;
(2)第1次和第2次都抽到理科題的概率;
(3)在第1次抽到理科題的條件下,第2次抽到文科題的概率
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com