在△ABC中,角A,B,C的對(duì)邊分別為a,b,c.已知2cos(B-C)+1=4cosBcosC.
(Ⅰ)求A;
(Ⅱ)若a=2
,△ABC的面積為2
,求b+c.
(Ⅰ)
;(Ⅱ)6.
【解析】
試題分析:(Ⅰ) 對(duì)于2cos(B-C)+1=4cosBcosC通過三角恒等變換,再結(jié)合角的范圍即可得;(Ⅱ)利用余弦定理、面積公式可求.
試題解析:(Ⅰ) 由2cos(B-C)+1=4cosBcosC,得
2(cosBcosC+sinBsinC)+1=4cosBcosC,
即2(cosBcosC-sinBsinC)=1,亦即2cos(B+C)=1,
∴cos(B+C)=
. ∵0<B+C<π,∴B+C=
.
∵A+B+C=π, ∴A=
.
6分
(Ⅱ)由(Ⅰ),得A=
.
由S△ABC=2
,得
bcsin
=2
,∴bc=8. ①
由余弦定理a2=b2+c2-2bccosA,得
(2
)2=b2+c2-2bccos
,即b2+c2+bc=28,
∴(b+c)2-bc=28. ②
將①代入②,得(b+c)2-8=28,
∴b+c=6. 12分
考點(diǎn):解三角形,正、余弦定理,面積公式
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
| 3 |
| 3 |
| A、a=c |
| B、b=c |
| C、2a=c |
| D、a2+b2=c2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| 11 | 14 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| b |
| a |
| sinB |
| cosA |
| 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| 5 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com