中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
討論方程)所表示的曲線類型.
時,此方程表示焦點在軸上的雙曲線;當時,此方程表示焦點在軸上的橢圓.

試題分析:當時,此方程表示焦點在軸上的雙曲線;
時,此方程表示焦點在軸上的橢圓.
點評:(1)做此題時,我們要注意討論的不重不漏。(2)我們熟練掌握判斷橢圓、雙曲線以及圓的方程的特點。方程,當時表示橢圓;(當時,表示焦點在x軸上的橢圓;當時表示焦點在y軸上的橢圓。)當時,表示雙曲線;當時,表示圓。
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本小題12分)已知橢圓的離心率為為橢圓的右焦點,兩點在橢圓上,且,定點
(1)若時,有,求橢圓的方程;
(2)在條件(1)所確定的橢圓下,當動直線斜率為k,且設時,試求關于S的函數表達式f(s)的最大值,以及此時兩點所在的直線方程。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
已知點F( 1,0),與直線4x+3y + 1 =0相切,動圓M與及y軸都相切. (I )求點M的軌跡C的方程;(II)過點F任作直線l,交曲線C于A,B兩點,由點A,B分別向各引一條切線,切點 分別為P,Q,記.求證是定值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分13分)
如圖,已知橢圓的焦點為,離心率為,過點的直線交橢圓兩點.

(1)求橢圓的方程;
(2)①求直線的斜率的取值范圍;
②在直線的斜率不斷變化過程中,探究是否總相等?若相等,請給出證明,若不相等,說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知雙曲線的兩個焦點為為坐標原點,點在雙曲線上,且,若成等比數列,則等于
A.B.C. D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

若點到點的距離比它到直線的距離少1,則動點的軌跡方程是    __________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知兩定點,曲線上的點P到的距離之差的絕對值是6,則該曲線的方程為(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

若橢圓長軸長與短軸長之比為2,它的一個焦點是(2,0),則橢圓的標準方程是               

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知點分別是雙曲線的左、右焦點,過且垂直于軸的直線與雙曲線交于兩點,若是鈍角三角形,則該雙曲線離心率的取值范圍是
(     )
A.B.C.D.

查看答案和解析>>

同步練習冊答案