已知橢圓C的方程為
,其離心率為
,經(jīng)過橢圓焦點(diǎn)且垂直于長軸的弦長為3.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l:
與橢圓C交于A、B兩點(diǎn),P為橢圓上的點(diǎn),O為坐標(biāo)原點(diǎn),且滿足
,求
的取值范圍.
(Ⅰ)
. (Ⅱ)
。
解析試題分析:(Ⅰ)由已知可得
,
所以![]()
又 ![]()
解之得![]()
故橢圓
的方程為
. 5分
(Ⅱ) 由
消y化簡整理得:
,
①
設(shè)
點(diǎn)的坐標(biāo)分別為
,
8分
由于點(diǎn)
在橢圓
上,所以
.
從而
,化簡得
,經(jīng)檢驗(yàn)滿足①式.
又![]()
![]()
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/43/d/zoua71.png" style="vertical-align:middle;" />,得3≤4k2+3≤4,
有
≤
≤1,故
12分
考點(diǎn):橢圓的標(biāo)準(zhǔn)方程,平面向量的線性運(yùn)算,直線與橢圓的位置關(guān)系。
點(diǎn)評:中檔題,確定圓錐曲線的標(biāo)準(zhǔn)方程,往往利用幾何特征,確定a,b,c,e得到關(guān)系。曲線關(guān)系問題,往往通過聯(lián)立方程組,得到一元二次方程,運(yùn)用韋達(dá)定理。本題利用韋達(dá)定理,簡化了計(jì)算過程。
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知![]()
,曲線
上任意一點(diǎn)
分別與點(diǎn)
、
連線的斜率的乘積為
.
(Ⅰ)求曲線
的方程;
(Ⅱ)設(shè)直線
與
軸、
軸分別交于
、
兩點(diǎn),若曲線
與直線
沒有公共點(diǎn),求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線
與雙曲線
有公共焦點(diǎn)
,點(diǎn)
是曲線
在第一象限的交點(diǎn),且
.
(1)求雙曲線
的方程;
(2)以雙曲線
的另一焦點(diǎn)
為圓心的圓
與直線
相切,圓
:
.過點(diǎn)
作互相垂直且分別與圓
、圓
相交的直線
和
,設(shè)
被圓
截得的弦長為
,
被圓
截得的弦長為
,問:
是否為定值?如果是,請求出這個定值;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知A、B、C是橢圓W:
上的三個點(diǎn),O是坐標(biāo)原點(diǎn).
(I)當(dāng)點(diǎn)B是W的右頂點(diǎn),且四邊形OABC為菱形時,求此菱形的面積;
(II)當(dāng)點(diǎn)B不是W的頂點(diǎn)時,判斷四邊形OABC是否可能為菱形,并說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:
的左、右焦點(diǎn)分別為F1、F2,上頂點(diǎn)為A,△AF1F2為正三角形,且以線段F1F2為直徑的圓與直線
相切.
(Ⅰ)求橢圓C的方程和離心率e;
(Ⅱ)若點(diǎn)P為焦點(diǎn)F1關(guān)于直線
的對稱點(diǎn),動點(diǎn)M滿足
. 問是否存在一個定點(diǎn)T,使得動點(diǎn)M到定點(diǎn)T的距離為定值?若存在,求出定點(diǎn)T的坐標(biāo)及此定值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的左右焦點(diǎn)坐標(biāo)分別是
,離心率
,直線
與橢圓
交于不同的兩點(diǎn)
.
(1)求橢圓
的方程;
(2)求弦
的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,點(diǎn)
是橢圓
(
)的左焦點(diǎn),點(diǎn)
,
分別是橢圓的左頂點(diǎn)和上頂點(diǎn),橢圓的離心率為
,點(diǎn)
在
軸上,且
,過點(diǎn)
作斜率為
的直線
與由三點(diǎn)
,
,
確定的圓
相交于
,
兩點(diǎn),滿足
.![]()
(1)若
的面積為
,求橢圓的方程;
(2)直線
的斜率是否為定值?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義:設(shè)
分別為曲線
和
上的點(diǎn),把
兩點(diǎn)距離的最小值稱為曲線
到
的距離.
(1)求曲線
到直線
的距離;
(2)已知曲線
到直線
的距離為
,求實(shí)數(shù)
的值;
(3)求圓
到曲線
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
:
的右焦點(diǎn)
在圓
上,直線
交橢圓于
、
兩點(diǎn).
(Ⅰ) 求橢圓
的方程;
(Ⅱ) 若OM⊥ON(
為坐標(biāo)原點(diǎn)),求
的值;
(Ⅲ)
設(shè)點(diǎn)
關(guān)于
軸的對稱點(diǎn)為
(
與
不重合),且直線![]()
與
軸交于點(diǎn)
,試問
的面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com