中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知矩陣的逆矩陣,求矩陣的特征值.
見解析
【考點】矩陣的運算,矩陣的特征值。
由矩陣的逆矩陣,根據定義可求出矩陣,從而求出矩陣的特征值
解:∵,∴
,∴
∴矩陣的特征多項式為
,解得矩陣的特征值
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

如圖,單位正方形區域在二階矩陣的作用下變成平行四邊形區域.

(Ⅰ)求矩陣
(Ⅱ)求,并判斷是否存在逆矩陣?若存在,求出它的逆矩陣.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分10分)
設矩陣是把坐標平面上的點的橫坐標伸長到3倍,縱坐標伸長到2倍的伸壓變換矩陣.
(1)求逆矩陣
(2)求橢圓在矩陣作用下變換得到的新曲線的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(選修4—2  矩陣與變換)(本題滿分7分)
變換是將平面上每個點的橫坐標乘2,縱坐標乘4,變到點
(Ⅰ)求變換的矩陣;
(Ⅱ)圓在變換的作用下變成了什么圖形?

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

若點在矩陣    對應變換的作用下得到的點為,(Ⅰ)求矩陣的逆矩陣;
(Ⅱ)求曲線C:x2+y2=1在矩陣N=所對應變換的作用下得到的新的曲線C'的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

B.(選修4—2:矩陣與變換)
已知矩陣,若矩陣對應的變換把直線變為
直線,求直線的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

若矩陣屬于特征值6的特征向量為,并且點在矩陣的變換下得到點,求矩陣

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

若行列式,則      

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

定義矩陣變換;對于矩陣變換,函數的最大值為_____________

查看答案和解析>>

同步練習冊答案