已知函數(shù)
.
(Ⅰ)當(dāng)
時(shí),求曲線
在點(diǎn)
處的切線方程;
(Ⅱ)當(dāng)
時(shí),若
在區(qū)間
上的最小值為
,求
的取值范圍.
(Ⅰ)
;(Ⅱ)
.
解析試題分析:(Ⅰ)將
代入
得:
,利用導(dǎo)數(shù)便可求得曲線
在點(diǎn)
處的切線方程;
(Ⅱ)
.
令
得:
.因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e7/8/jr12z1.png" style="vertical-align:middle;" />,所以
.下面就結(jié)合圖象分情況求出
在區(qū)間
上的最小值,再由其最小值為
,求出
的取值范圍.
試題解析:(Ⅰ)當(dāng)
時(shí),
,
此時(shí):
,于是:切線方程為
.
(Ⅱ)![]()
令
得:![]()
當(dāng)
即
時(shí),
,函數(shù)
在
上單調(diào)遞增,于是
滿足條件
當(dāng)
即
時(shí),函數(shù)
在
上單調(diào)遞減,在
上單調(diào)遞增,于是
不滿足條件.
當(dāng)
即
時(shí),函數(shù)
在
上單調(diào)遞減,此時(shí)
不滿足條件.
綜上所述:實(shí)數(shù)
的取值范圍是
.
考點(diǎn):1、導(dǎo)數(shù)的應(yīng)用;2、解不等式.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
.
(1)求
的單調(diào)區(qū)間及最大值;
(2)
恒成立,試求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
.
(1)當(dāng)
,
時(shí),求函數(shù)
的最大值;
(2)令
,其圖象上存在一點(diǎn)
,使此處切線的斜率
,求實(shí)數(shù)
的取值范圍;
(3)當(dāng)
,
時(shí),方程
有唯一實(shí)數(shù)解,求正數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
函數(shù)
.
(Ⅰ)求
的單調(diào)區(qū)間和極值;
(Ⅱ)當(dāng)
時(shí),不等式![]()
![]()
恒成立,求
的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
.
(Ⅰ)求函數(shù)
的單調(diào)遞增區(qū)間;
(Ⅱ)設(shè)
,
,
,
為函數(shù)
的圖象上任意不同兩點(diǎn),若過
,
兩點(diǎn)的直線
的斜率恒大于
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
在
上是增函數(shù),
(1)求實(shí)數(shù)
的取值集合
;
(2)當(dāng)
取值集合
中的最小值時(shí),定義數(shù)列
;滿足
且
,
,求數(shù)列
的通項(xiàng)公式;
(3)若
,數(shù)列
的前
項(xiàng)和為
,求證:![]()
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)![]()
(Ⅰ)設(shè)
,
,
,證明:
在區(qū)間
內(nèi)存在唯一的零點(diǎn);
(Ⅱ)設(shè)
,若對任意
,均有
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
,其中
為常數(shù),
,函數(shù)
和
的圖像在它們與坐標(biāo)軸交點(diǎn)處的切線分別為
、
,且
.
(1)求常數(shù)
的值及
、
的方程;
(2)求證:對于函數(shù)
和
公共定義域內(nèi)的任意實(shí)數(shù)
,有
;
(3)若存在
使不等式
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com