已知圓x2+y2-2ax-6ay+10a2-4a=0(0<a
4)的圓心為C,直線L: y=x+m。
(1)若a=2,求直線L被圓C所截得的弦長
的最大值;
(2)若m=2,求直線L被圓C所截得的弦長
的最大值;
(1)
;(2)![]()
解析試題分析:(1)根據(jù)圓的圓心坐標(biāo)和半徑求圓的標(biāo)準(zhǔn)方程.(2)直線和圓相交,根據(jù)半徑,弦長的一半,圓心距求弦長.(3)圓的弦長的常用求法:(1)幾何法:求圓的半徑
,弦心距
,弦長
,則![]()
(2)代數(shù)方法:運(yùn)用根與系數(shù)的關(guān)系及弦長公式
.(4)注意特殊時(shí)候求弦長,如過圓心.
試題解析:圓C的方程可化為(x-a)2+(y-3a)2=4a
∴圓心為C(a,3a),半徑為r=2
2分
若a=2,則c(2,6),r=
,
∵弦AB過圓心時(shí)最長,∴
max=4
4分
若m=2,則圓心C(a,3a)到直線x-y+2=0的距離
d=
,r=2
8分
=2![]()
∴當(dāng)a=2時(shí),
max=2
, 12分
考點(diǎn):直線與圓相交求弦長的問題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,為保護(hù)河上古橋OA,規(guī)劃建一座新橋BC,同時(shí)設(shè)立一個(gè)圓形保護(hù)區(qū).規(guī)劃要求:新橋BC與河岸AB垂直;保護(hù)區(qū)的邊界為圓心M在線段OA上并與BC相切的圓,且古橋兩端O和A到該圓上任意一點(diǎn)的距離均不少于80m.經(jīng)測量,點(diǎn)A位于點(diǎn)O正北方向60m處,點(diǎn)C位于點(diǎn)O正東方向170m處(OC為河岸),
.以
所在直線為
軸,以
所在直線為
軸建立平面直角坐標(biāo)系.
(Ⅰ)求
所在直線的方程及新橋BC的長;
(Ⅱ)當(dāng)OM多長時(shí),圓形保護(hù)區(qū)的面積最大?
并求此時(shí)圓的方程.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓M的圓心在直線
上,且過點(diǎn)
、
.
(1)求圓M的方程;
(2)設(shè)P為圓M上任一點(diǎn),過點(diǎn)P向圓O:
引切線,切點(diǎn)為Q.試探究:
平面內(nèi)是否存在一定點(diǎn)R,使得
為定值?若存在,求出點(diǎn)R的坐標(biāo);若不存在,請說
明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,圓O的直徑AB=8,圓周上過點(diǎn)C的切線與BA的延長線交于點(diǎn)E,過點(diǎn)B作AC的平行線交EC的延長線于點(diǎn)P.![]()
(1)求證:BC2=AC·BP;
(2)若EC=2
,求PB的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系
中,已知點(diǎn)
在圓
內(nèi),動直線
過點(diǎn)
且交圓
于
兩點(diǎn),若△ABC的面積的最大值為
,則實(shí)數(shù)
的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
(幾何證明選講選做題)已知PA是圓O的切線,切點(diǎn)為A,PA=2.AC是圓O的直徑,PC與圓O交于點(diǎn)B,PB=1,則圓O的半徑為R= 。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com