若橢圓
的左、右焦點分別為F1,F2,橢圓的離心率為
:2.(1)過點C(-1,0)且以向量
為方向向量的直線
交橢圓于不同兩點A、B,若
,則當△OAB的面積最大時,求橢圓的方程。
(2)設M,N為橢圓上的兩個動點,
,過原點O作直線MN的垂線OD,垂足為D,求點D的軌跡方程.
科目:高中數學 來源: 題型:解答題
在直角坐標系xOy中,直線l的方程為x-y+4=0,曲線C的參數方程為
.
(Ⅰ)已知在極坐標(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標為
,判斷點P與直線l的位置關系;
(Ⅱ)設點Q是曲線C上的一個動點,求它到直線l的距離的最值;
(Ⅲ)請問是否存在直線
,
∥l且
與曲線C的交點A、B滿足
;
若存在請求出滿足題意的所有直線方程,若不存在請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知雙曲線
的漸近線方程為
,左焦點為F,過
的直線為
,原點到直線
的距離是![]()
(1)求雙曲線的方程;
(2)已知直線
交雙曲線于不同的兩點C,D,問是否存在實數
,使得以CD為直徑的圓經過雙曲線的左焦點F。若存在,求出m的值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知拋物線
的焦點為
,過焦點
且不平行于
軸的動直線
交拋物線于
,
兩點,拋物線在
、
兩點處的切線交于點
.![]()
(Ⅰ)求證:
,
,
三點的橫坐標成等差數列;
(Ⅱ)設直線
交該拋物線于
,
兩點,求四邊形
面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
的左右焦點為
,拋物線C:
以F2為焦點且與橢圓相交于點
、![]()
,點
在
軸上方,直線
與拋物線
相切.
(1)求拋物線
的方程和點
、
的坐標;
(2)設A,B是拋物線C上兩動點,如果直線
,
與
軸分別交于點
.
是以
,
為腰的等腰三角形,探究直線AB的斜率是否為定值?若是求出這個定值,若不是說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
經過點
,且兩焦點與短軸的一個端點構成等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)動直線
交橢圓
于
、
兩點,試問:在坐標平面上是否存在一個定點
,使得以
為直徑的圓恒過點
.若存在,求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
:
的右焦點
,過原點和
軸不重合的直線與橢圓
相交于
,
兩點,且
,
最小值為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)若圓:
的切線
與橢圓
相交于
,
兩點,當
,
兩點橫坐標不相等時,問:
與
是否垂直?若垂直,請給出證明;若不垂直,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知
是橢圓的左、右焦點,O為坐標原點,點P
在橢圓上,線段
與y軸的交點M滿足![]()
(Ⅰ) 求橢圓的標準方程;
(Ⅱ) 圓O是以
為直徑的圓,直線
:
與圓相切,并與橢圓交于不同的兩點
,當
,且滿足
時,求直線
的方程。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設拋物線
的焦點為
,經過點
的動直線
交拋物線
于點
,
且
.
(1)求拋物線
的方程;
(2)若
(
為坐標原點),且點
在拋物線
上,求直線
傾斜角;
(3)若點
是拋物線
的準線上的一點,直線
的斜率分別為
.求證:
當
為定值時,
也為定值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com