中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
(本題滿分12分)
已知函數(m為常數,且m>0)有極大值9.
(1)求m的值;
(2)若斜率為-5的直線是曲線的切線,求此直線方程.
解:(Ⅰ) f’(x)=3x2+2mx-m2=(x+m)(3x-m)=0,則x=-m或x=m,
當x變化時,f’(x)與f(x)的變化情況如下表:
x
(-∞,-m)
-m
(-m,)

(,+∞)
f’(x)
+
0

0
+
f (x)
 
極大值
 
極小值
 
從而可知,當x=-m時,函數f(x)取得極大值9,
即f(-m)=-m3+m3+m3+1=9,∴m=2.
(Ⅱ)由(Ⅰ)知,f(x)=x3+2x2-4x+1,
依題意知f’(x)=3x2+4x-4=-5,∴x=-1或x=-.
又f(-1)=6,f (-)=
所以切線方程為y-6=-5(x+1),或y-=-5(x+),
即5x+y-1=0,或135x+27y-23=0.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:填空題

若y=f(2x)的定義域是[-1,1],則函數y=f(log2x)的定義域為     .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
函數f(x)=x2-2x+2在閉區間[t,t+1](t∈R)上的最小值為g(t).
(1)試寫出g(t)的表達式;
(2)作g(t)的圖象并寫出g(t)的最小值。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

函數的定義域為( )
      B.       C.        D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

.設函數
(Ⅰ)求的解析式及定義域。(Ⅱ)求的值域。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(12分)若函數y=lg(3-4x+x2)的定義域為M,.當x∈M時,
求f(x)=2x+2-3×4x的最值及相應的x的值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數
(1)求函的定義域;
(2)求證:函數是增函數;
(3)求函數的最小值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

函數的定義域為_________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知常數是負實數,則函數的定義域是      

查看答案和解析>>

同步練習冊答案