中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知函數的圖象經過點.
(1)求實數的值;
(2)設,求函數的最小正周期與單調遞增區間.

(1);(2)最小正周期為,單調遞增區間為.

解析試題分析:(1)將點代入函數的解析式即可求出實數的值;(2)根據(1)中的結果,先將函數的解析式進行化簡,化簡為,再根據周期公式計算函數的最小正周期,再利用整體法對施加相應的限制條件,解出的取值范圍,即可求出函數的單調遞增區間.
試題解析:(1)由于函數的圖象經過點
因此,解得
所以
(2)

因此函數的最小正周期
,解得
故函數的單調遞增區間為.
考點:1.二倍角公式;2.三角函數的周期性與單調性

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知向量a=(sinθ,cosθ),b=(,1),其中θ∈(0,).
(1)若a∥b,求sinθ和cosθ的值;
(2)若f(θ)=(a+b)2,求f(θ)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=2cos2sin x.
(1)求函數f(x)的最小正周期和值域;
(2)若α為第二象限角,且f,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

若向量m=(sinωx,0),n=(cosωx,-sinωx)(ω>0),在函數f(x)=
m·(m+n)+t的圖象中,對稱中心到對稱軸的最小距離為,且當x∈[0,]時,f(x)的最大值為1.
(1)求函數f(x)的解析式.
(2)求函數f(x)的單調遞增區間.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=sin(ωx+φ)(ω>0,|φ|<π)的部分圖像如圖所示,

(1)求ω,φ的值;
(2)設g(x)=2f f-1,當x∈[0,]時,求函數g(x)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數)的最小正周期為
(1)求函數的單調增區間;
(2)將函數的圖象向左平移個單位,再向上平移個單位,得到函數的圖象.若上至少含有個零點,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知x∈R,ω>0,uv=(cos2ωxsin ωx),函數f(x)=u·v的最小正周期為π.
(1)求ω的值;
(2)求函數f(x)在區間上的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知sin(3π+θ)=
的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=2sin (0≤x≤5),點AB分別是函數yf(x)圖象上的最高點和最低點.
(1)求點AB的坐標以及·的值;
(2)設點AB分別在角αβ的終邊上,求tan(α-2β)的值.

查看答案和解析>>

同步練習冊答案