中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
(2012•桂林一模)半徑為4的球面上有A,B,C,D四點,且滿足AB⊥AC,AC⊥AD,AD⊥AB,則S△ABC+S△ACD+S△ADB的最大值為(S為三角形的面積)
32
32
分析:設AB=a,AC=b,AD=c,根據AB⊥AC,AC⊥AD,AD⊥AB,可得a2+b2+c2=4R2=64,而S△ABC+S△ACD+S△ADB=
1
2
(ab+ac+bc),利用基本不等式,即可求得最大值為.
解答:解:設AB=a,AC=b,AD=c,
∵AB⊥AC,AC⊥AD,AD⊥AB,∴a2+b2+c2=4R2=64
∴S△ABC+S△ACD+S△ADB=
1
2
(ab+ac+bc)≤
1
2
(a2+b2+c2)=32
∴S△ABC+S△ACD+S△ADB的最大值為32
故答案為:32.
點評:本題考查求內接幾何體,考查基本不等式的運用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•桂林一模)如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD為平行四邊形,且AD=2,AB=AA1=4,∠BAD=60°,E為AB的中點.
(Ⅰ)證明:AC1∥平面EB1C;
(Ⅱ)求直線ED1與平面EB1C所成角.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•桂林一模)已知y=f(x)是其定義域上的單調遞增函數,它的反函數是y=f-1(x),且y=f(x+1)的圖象過A(-4,0),B(2,3)兩點,若|f-1(x+1)|≤3,則x的取值范圍是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•桂林一模)差數列{an}的公差為2,若a1,a3,a4成等比數列,則a2=(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•桂林一模)點P(cos300°,sin300°)在直角坐標平面上位于(  )

查看答案和解析>>

同步練習冊答案