中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
11、已知數列{an}(n≥1)滿足an+2=an+1-an,且a2=1.若數列的前2011項之和為2012,則前2012項的和等于(  )
分析:本題可通過遞推公式求出數列的前九項,從而確定數列周期為6,再由數列周期從而求解a2011=a1,求出結果.
解答:解:∵設a1=m,
由于a2=1,且an+2=an+1-an
∴a3=1-m.a4=-m,a5=-1,a6=m-1,a7=m,a8=1,a9=1-m…
∴數列{an}是周期為6的周期函數,且前6項和為0,
∴數列的前2011項之和為:m
?m=2012,
則前2012項的和等于2012+1=2013.
故選C.
點評:本題主要考查由遞推公式推導數列的通項公式,其中滲透了周期數列這一知識點,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

17、已知數列{an}前n項和為Sn且2an-Sn=2(n∈N*).
(Ⅰ)求{an}的通項公式;
(Ⅱ)若數列{bn}滿足b1=1,且bn+1=bn+an(n≥1),求{bn}通項公式及前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}(n∈N+)中,a1=1,an+1=
an
2an+1
,則an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}前n項和Sn=n2+2n,設bn=
1anan+1

(1)試求an
(2)求數列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•嘉定區一模)定義x1,x2,…,xn的“倒平均數”為
n
x1+x2+…+xn
(n∈N*).已知數列{an}前n項的“倒平均數”為
1
2n+ 4
,記cn=
an
n+1
(n∈N*).
(1)比較cn與cn+1的大小;
(2)設函數f(x)=-x2+4x,對(1)中的數列{cn},是否存在實數λ,使得當x≤λ時,f(x)≤cn對任意n∈N*恒成立?若存在,求出最大的實數λ;若不存在,說明理由.
(3)設數列{bn}滿足b1=1,b2=b(b∈R且b≠0),bn=|bn-1-bn-2|(n∈N*且n≥3),且{bn}是周期為3的周期數列,設Tn為{bn}前n項的“倒平均數”,求
lim
n→∞
Tn

查看答案和解析>>

同步練習冊答案