求下列函數(shù)的值域:
(1) f(x)=
;
(2) g(x)=
;
(3) y=log3x+logx3-1.
(1)
(2)![]()
(3)(-∞,-3]∪[1,+∞).
【解析】(1)由
解得-3≤x≤1.
∴ f
=
的定義域是
.∵ y≥0,∴ y2=4+2
,
即y2=4+2
.令t
=-
+4
.
∵ x∈
,由t
=0,t
=4,t
=0,
∴ 0≤t≤4,從而y2∈
,即y∈
,∴ 函數(shù)f
的值域是
.
(2) g
=
.
∵ x≠3且x≠4,∴ g
≠1且g
≠-6.
∴ 函數(shù)g
的值域是
.
(3) 函數(shù)的定義域為{x|x>0且x≠1}.
當(dāng)x>1時,log3x>0,y=log3x+logx3-1≥2
-1=1;
當(dāng)0<x<1時,log3x<0,y=log3x+logx3-1=-[(-log3x)+(-logx3)]≤-2-1=-3.
所以函數(shù)的值域是(-∞,-3]∪[1,+∞).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第二章第6課時練習(xí)卷(解析版) 題型:解答題
已知二次函數(shù)f(x)=ax2+bx+c圖象的頂點為(-1,10),且方程ax2+bx+c=0的兩根的平方和為12,求二次函數(shù)f(x)的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第二章第4課時練習(xí)卷(解析版) 題型:填空題
函數(shù)f(x)=x3-x的圖象關(guān)于________對稱.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第二章第3課時練習(xí)卷(解析版) 題型:填空題
函數(shù)y=(x-3)|x|的單調(diào)遞減區(qū)間是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第二章第2課時練習(xí)卷(解析版) 題型:填空題
函數(shù)f(x)=
的值域為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第二章第2課時練習(xí)卷(解析版) 題型:填空題
已知函數(shù)f(x)=x2-2x,x∈[a,b]的值域為[-1,3],則b-a的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第二章第1課時練習(xí)卷(解析版) 題型:填空題
已知函數(shù)f(x)=alog2x-blog3x+2,若f
=4,則f(2 014)的值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第二章第14課時練習(xí)卷(解析版) 題型:填空題
設(shè)函數(shù)f(x)=
(a∈R,e為自然對數(shù)的底數(shù)).若存在b∈[0,1]使f(f(b))=b成立,則a的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第二章第12課時練習(xí)卷(解析版) 題型:填空題
已知函數(shù)f(x)=lnx-
(m∈R)在區(qū)間[1,e]上取得最小值4,則m=________.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com