中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知銳角△ABC的三內角A、B、C所對的邊分別為a、b、c,邊a、b是方程x2-2
3
x+2=0的兩根,角A、B滿足關系2sin(A+B)-
3
=0,求角C的度數,邊c的長度及△ABC的面積.
分析:由已知等式求出sin(A+B)的值,根據三角形ABC為銳角三角形,確定出A+B及C的度數,再由a、b是方程x2-2
3
x+2=0的兩根,利用韋達定理求出a+b與ab的值,利用余弦定理列出關系式,將cosA值代入并利用完全平方公式化簡,把a+b與ab的值代入求出c的值,由ab與sinC的值,利用三角形面積公式即可求出三角形ABC的面積.
解答:解:∵2sin(A+B)-
3
=0,
∴sin(A+B)=
3
2

∵△ABC為銳角三角形,
∴A+B=120°,即C=60°,
∵a、b是方程x2-2
3
x+2=0的兩根,
∴a+b=2
3
,ab=2,
∴由余弦定理得:c2=a2+b2-2abcosC=a2+b2-ab=(a+b)2-3ab=12-6=6,
∴c=
6
,S△ABC=
1
2
absinC=
1
2
×2×
3
2
=
3
2
點評:此題考查了余弦定理,三角形的面積公式,以及特殊角的三角函數值,熟練掌握定理及公式是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知銳角△ABC的三內角A、B、C的對邊分別是a,b,c,且(b2+c2-a2)tanA=
3
bc

(1)求角A的大小;
(2)求sin(A+10°)•[1-
3
tan(A-10°)]
的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知銳角△ABC的三個內角A,B,C所對的邊分別為a,b,c,且滿足(a2+c2-b2)tanB=
3
ac,則角B為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=2sin(ωx-
π
6
),(A>0,ω>0,x∈R)
,且f(x)的最小正周期是2π.
(1)求ω及f(0)的值;
(2)已知銳角△ABC的三個內角分別為A、B、C,若f(A+
3
)=
8
5
f(B+
6
)=-
30
17
,求sinC的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•東莞一模)向量
a
=(
1
2
1
2
sinx+
3
2
cosx)
b
=(1,y)
,已知
a
b
,且有函數y=f(x).
(1)求函數y=f(x)的周期;
(2)已知銳角△ABC的三個內角分別為A,B,C,若有f(A-
π
3
)=
3
,邊BC=
7
sinB=
21
7
,求AC的長及△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•崇明縣二模)已知向量
a
=(sinx,cosx),
b
=(1,
3
),設函數f(x)=
a
b

(1)若x∈[0,π],求函數f(x)的單調區間;
(2)已知銳角△ABC的三內角A、B、C所對的邊是a、b、c,若有f(A-
π
3
)=
3
,a=
7
,sinB=
21
7
,求c邊的長度.

查看答案和解析>>

同步練習冊答案