中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知a>0且a≠1.設命題p:函數y=ax是定義在R上的增函數;命題q:關于x的方程x2+ax+1=0有兩個不等的負實根.若“p或q”為真命題,“p且q”為假命題,求實數a的取值范圍.
分析:根據指數函數的性質可知,若p真:a>1,若q真:△=(a-1)2-4>0,再根據“p或q”為真命題,“p且q”為假命題,判斷命題p、q一真一假,從而求出a的范圍.
解答:解:由函數y=ax是定義在R上的增函數,得a>1,
∴p為真時,a>1;
由關于x的方程x2+ax+1=0有兩個不等的負實根,得
=a2-4>0
-
a
2
<0
f(0)>0
⇒a>2,
∵p或q為真,p且q為假,由復合命題真值表知:p,q一真一假,
若p真q假時,1<a≤2;
若p假q真時,
0<a<1
a>2
⇒a∈∅;
綜上a的取值范圍是1<a≤2.
點評:本題主要考查了指數函數的單調性及其應用,考查了二次函數的圖象性質及應用,考查了復合命題的真假判斷規律,利用二次函數的圖象性質分析求解命題q為真時的等價條件是解答本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知a>0且a≠1,設p:函數y=ax在R上單調遞增,q:設函數y=
2x-2a,(x≥2a)
2a,(x<2a)
,函數y≥1恒成立,若p∧q為假,p∨q為真,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•普陀區二模)已知a>0且a≠1,函數f(x)=loga(x+1),g(x)=loga
11-x
,記F(x)=2f(x)+g(x)
(1)求函數F(x)的定義域D及其零點;
(2)若關于x的方程F(x)-m=0在區間[0,1)內有解,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a>0且a≠1,則使方程loga(x-ak)=loga2(x2-a2)有解時的k的取值范圍為
(-∞,-1)∪(0,1)
(-∞,-1)∪(0,1)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a>0且a≠1,函數f(x)=loga(x+1),g(x)=loga
11-x
,記F(x)=2f(x)+g(x)
(1)求函數F(x)的定義域D及其零點;
(2)試討論函數F(x)在定義域D上的單調性;
(3)若關于x的方程F(x)-2m2+3m+5=0在區間[0,1)內僅有一解,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源:普陀區二模 題型:解答題

已知a>0且a≠1,函數f(x)=loga(x+1),g(x)=loga
1
1-x
,記F(x)=2f(x)+g(x)
(1)求函數F(x)的定義域D及其零點;
(2)若關于x的方程F(x)-m=0在區間[0,1)內有解,求實數m的取值范圍.

查看答案和解析>>

同步練習冊答案