中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
若函數f(x)=(x+a)(bx+2a)(常數a、b∈R)是偶函數,且它的值域為(-∞,4],求該函數的解析式.
分析:由f(x)=(x+a)(bx+2a)是偶函數,知f(-x)=(-x+a)(-bx+2a)=f(x)=(x+a)(bx+2a),故2ax+abx=0,a=0或2+b=0.由此能求出f(x)的解析式.
解答:解:∵f(x)=(x+a)(bx+2a)是偶函數,
∴f(-x)=(-x+a)(-bx+2a)=f(x)=(x+a)(bx+2a),
∴bx2-2ax-abx+2a2=bx2+2ax+abx+2a2
∴2ax+abx=0,即ax(2+b)=0恒成立,
∴a=0或2+b=0.
若a=0,則f(x)=bx2,若b>0,值域是y≥0,b<0,值域是y≤0,都不是(-∞,4],
所以a≠0,故b+2=0,
∴b=-2,
所以f(x)=-2x2+2a2
∵-2x2≤0,
所以值域是f(x)≤2a2
∴2a2=4,
即f(x)=-2x2+4.
點評:本題考查二次函數的性質和應用,是基礎題.解題時要認真審題,仔細解答,注意合理地進行等價轉化.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
(3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

若函數 fx)=a x (a>0,a≠1 ) 的部分對應值如表:

x

-2

0

fx

0.592

1

則不等  式f-1(│x│<0)的解集是        ()

A. {x│-1<x<1}                  B. {xx<-1或x>1}         

C. {x│0<x<1}                    D. {x│-1<x<0或0<x<1}

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

若函數f(x)對于任意x∈[a,b],恒有|f(x)-f(a)-數學公式(x-a)|≤T(T為常數)成立,則稱函數f(x)在[a,b]上具有“T級線性逼近”.下列函數中:
①f(x)=2x+1;
②f(x)=x2
③f(x)=數學公式
④f(x)=x3
則在區間[1,2]上具有“數學公式級線性逼近”的函數的個數為


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4

查看答案和解析>>

科目:高中數學 來源:徐州模擬 題型:解答題

設函數f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
(3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:2013年福建省寧德市高三質量檢查數學試卷(理科)(解析版) 題型:選擇題

若函數f(x)對于任意x∈[a,b],恒有|f(x)-f(a)-(x-a)|≤T(T為常數)成立,則稱函數f(x)在[a,b]上具有“T級線性逼近”.下列函數中:
①f(x)=2x+1;
②f(x)=x2
③f(x)=
④f(x)=x3
則在區間[1,2]上具有“級線性逼近”的函數的個數為( )
A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習冊答案