中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知f(x)=x2+x+c,且f[f(x)]=f(x2+x+1)

(1)設g(x)=f[f(x)],求g(x)的解析式;

(2)設(x)=g(x)-λf(x),試問:是否存在實數λ,使得(x)在(-∞,-1)上是減函數,并且在(-1,-)上是增函數.

答案:
解析:

  解  (1)因為f(x)=x2+x+c,且f[f(x)]=f(x2+x+1),所以

  (x2+x+c)2+x2+x+c+c=(x2+x+1)2+x2+x+1+c,

  (2c-2)x2+(2c-2)x+c2+c-2=0,故c=1,

  所以  g(x)=f[f(x)]=x4+2x3+4x2+3x+3.

  (2)假設存在實數λ,使得(x)在(-∞,-1)上是減函數,并且在(-1,-)上是增函數.

  (x)=g(x)-λf(x)

     =x4+2x3+4x2+3x+3-λ(x2+x+1)

     =x4+2x3+(4-λ)x2+(3-λ)x+(3-λ),

  (x)=4x3+6x2+2(4-λ)x+(3-λ).

  (x)在(-∞,-1)上是減函數,并且在(-1,-)上是增函數可得(-1)=0,

  所以-4+6-8+2λ+3-λ=0,解得λ=3.

  (x)=4x3+6x3+2x2=2x(2x+1)(x+1).

  ∴當x∈(-∞,-1)時,(x)=4x3+6x3+2x2=2x(2x+1)(x+1)<0,

  此時(x)在(-∞,-1)上是減函數;

  當x∈(-1,-)時,(x)=4x3+6x3+2x2=2x(2x+1)(x+1)>0,

  此時(x)在(-1,-)上是增函數.

  存在實數λ=3,使得(x)在(-∞,-1)上是減函數,并且在(-1,-)上是增函數.


練習冊系列答案
相關習題

科目:高中數學 來源:2010-2011年江西省德興一中高二下學期第一次月考數學文卷 題型:解答題

(本小題滿分14分)
已知f(x)=x2+bx+c為偶函數,曲線y=f(x)過點(2,5),g(x)=(x+a)f(x).
(1)求f(x)的解析式;
(2)若曲線y=g(x)有斜率為0的切線,求實數a的取值范圍;
(3)若當x=1時,函數y=g(x)取得極值,確定y=g(x)的單調區間.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年山東省高三單元測試文科數學試卷 題型:解答題

已知f(x)=x2-2x+1,g(x)是一次函數,且f[g(x)]=4x2,求g(x)的解析式.

 

查看答案和解析>>

科目:高中數學 來源:2012屆度遼寧省沈陽市高三數學質量檢測試卷 題型:解答題

已知f(x)=x2+2x-5,x∈[tt+1],若f(x)的最小值為h(t),寫出h(t)的表達式.

 

查看答案和解析>>

科目:高中數學 來源:2010年江蘇省南通市高一上學期期中考試數學試卷 題型:填空題

已知f(x)=x2axb,滿足f(1)=0,f(2)=0,則f(-1)=      ▲     

 

查看答案和解析>>

科目:高中數學 來源:2010-2011年江西省高二下學期第一次月考數學文卷 題型:解答題

(本小題滿分14分)

                                                                                                                              

已知f(x)=x2+bx+c為偶函數,曲線y=f(x)過點(2,5),g(x)=(x+a)f(x).

(1)求f(x)的解析式;

(2)若曲線y=g(x)有斜率為0的切線,求實數a的取值范圍;

(3)若當x=1時,函數y=g(x)取得極值,確定y=g(x)的單調區間.

 

 

查看答案和解析>>

同步練習冊答案