中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知x,y∈R,且滿足不等式組
x+y≥6
x≤5
y≤7
,則x2+y2的最大值是
 
分析:先根據約束條件畫出可行域,再利用幾何意義求最值,z=x2+y2表示動點到原點的距離的平方,只需求出可行域內的動點到原點的距離最大值即可.
解答:精英家教網解:注意到目標函數所表示的幾何意義是動點到原點的距離的平方,
作出可行域.易知當為B點時取得目標函數的最大值可知B點的坐標為(5,7),
代入目標函數中,可得zmax=52+72=74.
故填:74.
點評:本題主要考查了簡單的線性規劃,以及利用幾何意義求最值,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知x,y∈R+,且滿足
x
3
+
y
4
=1
,則xy的最大值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知x,y∈R+,且滿足
x
4
+
y
5
=1
,則x•y的最大值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知x,y∈R+,且滿足x2y=32,則x+y的最小值為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知x,y∈R,且滿足
x≥1
x-2y+3≥0
y≥x
,則x2+y2-6x的最小值等于(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知x,y∈R+,且滿足x+2y=xy,那么x+5y的最小值是
 

查看答案和解析>>

同步練習冊答案