中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知有窮數列{an}共有2k項(整數k≥2),首項a1=2.設該數列的前n項和為Sn,且an+1=(a-1)Sn+2(n=1,2,…,2k-1),其中常數a>1.
(1)求證:數列{an}是等比數列;
(2)若a=2
2
2k-1
,數列{bn}滿足bn=
1
n
log2(a1a2an)
(n=1,2,…,2k),求數列{bn}的通項公式;
(3)若(2)中的數列{bn}滿足不等式|b1-
3
2
|+|b2-
3
2
|+…+|b2k-1-
3
2
|+|b2k-
3
2
|≤4,求k的值.
分析:(1)要利用分類討論的思想,分別對n=1時和2≤n≤2k-1時進行討論,進而獲得an與an+1的關系,故可獲得問題的解答;
(2)首先利用(1)的結論和條件獲得an的表達式,然后對a1a2…an進行化簡,結合對數運算即可獲得數列{bn}的通項公式;
(3)首先利用分類討論對bn
3
2
的大小進行判斷,然后對所給不等式去絕對值,即可找到關于k的不等式,進而問題即可獲得解答.
解答:解:由題意:
(1)證明:
當n=1時,a2=2a,則
a2
a1
=a;
當2≤n≤2k-1時,an+1=(a-1)Sn+2,an=(a-1)Sn-1+2,
∴an+1-an=(a-1)an
an+1
an
=a,
∴數列{an}是等比數列.
(2)解:由(1)得an=2an-1,
∴a1a2an=2n a1+2+…+(n-1)=2na
n(n-1)
2
=2n+
n(n-1)
2k-1
,
bn=
1
n
[n+
n(n-1)
2k-1
]=
n-1
2k-1
+1
(n=1,2,2k).
(3)設bn
3
2
,解得n≤k+
1
2
,又n是正整數,于是當n≤k時,bn
3
2
;
當n≥k+1時,bn
3
2

原式=(
3
2
-b1)+(
3
2
-b2)+…+(
3
2
-bk)+(bk+1-
3
2
)+…+(b2k-
3
2

=(bk+1+…+b2k)-(b1+…+bk
=[
1
2
(k+2k-1)k
2k-1
+k]-[
1
2
(0+k-1)k
2k-1
+k]
=
k2
2k-1

k2
2k-1
≤4,得k2-8k+4≤0,4-2
3
≤k≤4+2
3
,又k≥2,
∴當k=2,3,4,5,6,7時,
原不等式成立.
點評:本題考查的是數列與不等式的綜合類問題.在解答的過程當中充分體現了分類討論的思想、對數運算的知識以及絕對值和解不等式的知識.值得同學們體會和反思.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

10、已知有窮數列{an}(n=1,2,3,…,6)滿足an∈{1,2,3,…,10},且當i≠j(i,j=1,2,3,…,6)時,ai≠aj.若a1>a2>a3,a4<a5<a6,則符合條件的數列{an}的個數是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知有窮數列{an}只有2k項(整數k≥2),首項a1=2,設該數列的前n項和為Sn,且Sn=
an+1-2
a-1
(n=1,2,3,…,2k-1)
,其中常數a>1.
(1)求{an}的通項公式;
(2)若a=2
2
n-1
,數列{bn}滿足bn=
1
n
log2(a1a2an),(n=1,2,3,…,2k)
,求證:1≤bn≤2.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知有窮數列{an}只有2k項(整數k≥2),首項a1=2,設該數列的前n項和為Sn,且Sn=
an+1-2
a-1
(n=1,2,3,…,2k-1)
,其中常數a>1.
(1)求{an}的通項公式;
(2)若a=2
2
2k-1
,數列{bn}滿足bn=log2an,(n=1,2,3,…,2k),Tn=
1
n
(b1+b2+b3+…+bn)
,求證:1≤Tn≤2.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知有窮數列{an}共有2k項(整數k≥2),首項a1=2,設該數列的前n項和為Sn,且Sn=
an+1-2
a-1
(n=1,2,3,…,2k-1),其中常數a>1.
(1)求{an}的通項公式;
(2)若a=2
2
2k-1
,數列{bn}滿足bn=
1
n
log2(a1a2an)
,(n=1,2,3,…,2k),求證:1≤bn≤2;
(3)若(2)中數列{bn}滿足不等式:|b1-
3
2
|+|b2-
3
2
|+…+|b2k-1-
3
2
|+|b2k-
3
2
|≤4
,求k的最大值.

查看答案和解析>>

同步練習冊答案