已知f(x)是定義在R上的不恒為零的函數,且對于任意的a、b∈R都滿足f(a·b)=af(b)+bf(a).
(1)求f(0),f(1)的值;
(2)判斷f(x)的奇偶性,并證明你的結論;
(3)若
Sn表示數列{bn}的前n項和.試問:是否存在關于n的整式g(n),使得S1+S2+S3+…+Sn-1=(Sn-1)·g(n)對于一切不小于2的自然數n恒成立?若存在,寫出g(n)的解析式,并加以證明;若不存在,試說明理由.
科目:高中數學 來源: 題型:
|
查看答案和解析>>
科目:高中數學 來源: 題型:
A.2 B.1 C.0 D.-1
查看答案和解析>>
科目:高中數學 來源: 題型:
已知f(x)是定義在R上的不恒為零的函數,且對于任意的a,b∈R,滿足f(a·b)=af(b)+bf(a),f(2)=2,a
=
(n∈N*),b
=
(n∈N*);考查下列結論:
①f(0)=f(1);②f(x)為偶函數;③數列{a
}為等比數列;④{b
}為等差數列.
其中正確的是 .
查看答案和解析>>
科目:高中數學 來源:2015屆廣東省高一第一次階段考試數學試卷(解析版) 題型:解答題
(本小題滿分14分)已知f(x)是定義在( 0,+∞)上的增函數,
且f(
) =
f(x)-f(y)
(1)求f(1)的值;
(2)若f(6)= 1,解不等式 f( x+3 )-f(
) <2
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com