中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

如圖,F1,F2是離心率為的橢圓C:(a>b>0)的左、右焦點,直線:x=-將線段F1F2分成兩段,其長度之比為1 : 3.設A,B是C上的兩個動點,線段AB的中垂線與C交于P,Q兩點,線段AB的中點M在直線l上.

(Ⅰ) 求橢圓C的方程;

(Ⅱ) 求的取值范圍.

 

【答案】

(Ⅰ);(Ⅱ).

【解析】

試題分析:(Ⅰ)根據題中的已知條件列有關的方程,求出,然后根據離心率求出,最后再根據三者之間的關系求出的值,從而確定橢圓的方程;(Ⅱ)先設點的坐標,然后根據已知條件將直線的方程用進行表示,再聯立直線與橢圓的方程,結合韋達定理將表示為含為代數式,然后再利用不等式的性質求出的取值范圍.

試題解析:(Ⅰ)設F2(c,0),則,所以c=1.

因為離心率e=,所以a=

所以橢圓C的方程為

(Ⅱ) 當直線AB垂直于x軸時,直線AB方程為x=-,此時P(,0)、Q(,0),

當直線AB不垂直于x軸時,設直線AB的斜率為k,M(-,m) (m≠0),A(x1,y1),B(x2,y2).

 得(x1+x2)+2(y1+y2)=0,

則-1+4mk=0,故k=

此時,直線PQ斜率為,PQ的直線方程為.即

聯立 消去y,整理得

所以

于是(x1-1)(x2-1)+y1y2

令t=1+32m2,1<t<29,則

又1<t<29,所以

綜上,的取值范圍為

考點:橢圓的方程、平面向量的數量積、韋達定理

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖,F1,F2是離心率為
2
2
的橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點,直線l:x=-
1
2
將線段F1F2分成兩段,其長度之比為1:3.設A,B是C上的兩個動點,線段AB的中點M在直線l上,線段AB的中垂線與C交于P,Q兩點.
(Ⅰ) 求橢圓C的方程;
(Ⅱ) 是否存在點M,使以PQ為直徑的圓經過點F2,若存在,求出M點坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•浙江模擬)如圖,F1,F2是離心率為
2
2
的橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點,直線l:x=-
1
2
將線段F1F2分成兩段,其長度之比為1:3.設A,B是C上的兩個動點,線段AB的中垂線與C交于P,Q兩點,線段AB的中點M在直線l上.
(Ⅰ) 求橢圓C的方程;
(Ⅱ) 求
F2P
F2Q
的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年浙江省臨海市高三第三次模擬理科數學試卷(解析版) 題型:解答題

如圖,F1,F2是離心率為的橢圓C:(a>b>0)的左、右焦點,直線:x=-將線段F1F2分成兩段,其長度之比為1 : 3.設A,B是C上的兩個動點,線段AB的中垂線與C交于P,Q兩點,線段AB的中點M在直線l上.

(Ⅰ) 求橢圓C的方程;

(Ⅱ) 求的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2012-2013學年江西南昌10所省高三第二次模擬突破沖刺理科數學(一)(解析版) 題型:解答題

如圖,F1,F2是離心率為的橢圓

C:(a>b>0)的左、右焦點,直線:x=-將線段F1F2分成兩段,其長度之比為1 : 3.設A,B是C上的兩個動點,線段AB的中點M在直線l上,線段AB的中垂線與C交于P,Q兩點.

(Ⅰ) 求橢圓C的方程;

(Ⅱ) 是否存在點M,使以PQ為直徑的圓經過點F2,若存在,求出M點坐標,若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數學 來源:2012-2013學年浙江省高三高考模擬測試理科數學試卷(解析版) 題型:解答題

 如圖,F1,F2是離心率為的橢圓C:(a>b>0)的左、右焦點,直線:x=-將線段F1F2分成兩段,其長度之比為1 : 3.設A,B是C上的兩個動點,線段AB的中垂線與C交于P,Q兩點,線段AB的中點M在直線l上.

(Ⅰ) 求橢圓C的方程;

(Ⅱ) 求的取值范圍.

 

查看答案和解析>>

同步練習冊答案