中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知函數F(x)=|2x-t|-x3+x+1(x∈R,t為常數,t∈R).
(Ⅰ)寫出此函數F(x)在R上的單調區間;
(Ⅱ)若方程F(x)-k=0恰有兩解,求實數k的值.
【答案】分析:(Ⅰ)由函數F(x)=|2x-t|-x3+x+1,去絕對值符號,轉化為分段函數求單調區間,
(Ⅱ)根據(Ⅰ)的討論的結果,可知函數圖象的變化情況,可知方程F(x)-k=0恰有兩解,求得實數k的值.
解答:解:(Ⅰ)F(x)=|2x-t|-x3+x+1=
∴F'(x)=
由-3x2+3=0得x1=-1,x2=1,而-3x2-1<0恒成立,
∴i)當<-1時,F(x)在區間(-∞,-1)上是減函數,
在區間(-1,1)上是增函數,在區間(1,+∞)上是減函數.
ii)當1>≥-1時,F(x)在區間(-∞,)上是減函數,
在區間(,1)上是增函數,在區間(1,+∞)上是減函數.
iii)當≥1時,F(x)在(-∞,+∞)上是減函數.
(II)由1)可知
i)當<-1時,F(x)在x=-1處取得極小值-1-t,
在x=1處取得極大值3-t,若方程F(x)-m=0恰有兩解,
此時m=-1-t或m=3-t.
ii)當-1≤<1,F(x)在x=處取值為-+1,
在x=1處取得極大值3-t,若方程F(x)-m=0恰有兩解,
此時m=-+1或m=3-t.
iii)當≥1時,不存在這樣的實數m,使得F(x)-m=0恰有兩解.
點評:考查利用導數研究函數的單調性和圖象,體現了數形結合的思想方法.本題是一道含參數的函數、導數與方程的綜合題,需要對參數進行分類討論.屬難題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數f(x)的最小正周期;
(2)若函數y=f(2x+
π
4
)
的圖象關于直線x=
π
6
對稱,求φ的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)為定義在R上的奇函數,且當x>0時,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時f(x)的表達式;
(2)若關于x的方程f(x)-a=o有解,求實數a的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調遞增區間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區間(1,3)上總不單調,求實數m的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線3x-y+2=0平行,若數列{
1
f(n)
}
的前n項和為Sn,則S2010的值為(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)是定義在區間(-1,1)上的奇函數,且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實數a的取值范圍是
 

查看答案和解析>>

同步練習冊答案