中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

(本題滿分16分,第1小題4分,第2小題6分,第3小題6分)
設橢圓的中心為原點O,長軸在x軸上,上頂點為A,左、右焦點分別為F1F2,線段OF1OF2的中點分別為B1B2,且△AB1B2是面積為的直角三角形.過1作直線l交橢圓于PQ兩點.
(1) 求該橢圓的標準方程;
(2) 若,求直線l的方程;
(3) 設直線l與圓Ox2+y2=8相交于MN兩點,令|MN|的長度為t,若t,求△B2PQ的面積的取值范圍.

(1);(2)x+2y+2=0和x–2y+2=0;(3)

解析試題分析:(1)設所求橢圓的標準方程為,右焦點為.
因△AB1B2是直角三角形,又|AB1|=|AB2|,故∠B1AB2=90º,得c=2b…………1分
在Rt△AB1B2中,,從而.………………3分
因此所求橢圓的標準方程為: …………………………………………4分
(2)由(1)知,由題意知直線的傾斜角不為0,故可設直線的方程為:,代入橢圓方程得,…………………………6分
P(x1, y1)、Q(x2, y2),則y1y2是上面方程的兩根,因此
,又,所以
………………………………8分
,得=0,即,解得;  
所以滿足條件的直線有兩條,其方程分別為:x+2y+2=0和x–2y+2=0……………………10分 
(3) 當斜率不存在時,直線,此時………………11分
當斜率存在時,設直線,則圓心到直線的距離
因此t=,得………………………………………13分
聯立方程組:,由韋達定理知,
,所以
因此.
,所以,所以…15分
綜上所述:△B2PQ的面積……………………………………………16分
考點:橢圓的簡單性質;圓的簡單性質;直線與橢圓的綜合應用。
點評:直線與圓錐曲線聯系在一起的綜合題在高考中多以高檔題、壓軸題出現,主要涉及位置關系的判定,弦長問題、最值問題、對稱問題、軌跡問題等.突出考查了數形結合、分類討論、函數與方程、等價轉化等數學思想方法.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知圓,直線經過點
(Ⅰ)求以線段CD為直徑的圓E的方程;
(Ⅱ)若直線與圓C相交于兩點,且為等腰直角三角形,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知圓,若直線的方程為,判斷直線與圓的位置關系;(2)若直線過定點,且與圓相切,求的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分6分)
已知直線截圓心在點的圓所得弦長為.
(1)求圓的方程;
(2)求過點的圓的切線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

直線,圓方程為
(1)求證:直線和圓相交
(2)當圓截直線所得弦最長時,求的值
(3)直線將圓分成兩個弓形,當弓形面積之差最大時,求直線方程

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題12分)如圖,設P是圓x2+y2=25上的動點,點D是P在x軸上的投影,M為PD上一點,且|MD|=|PD|.

(Ⅰ)當P在圓上運動時,求點M的軌跡C的方程;
(Ⅱ)求過點(3,0)且斜率為的直線被曲線C所截線段的長度.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分10分)已知,圓C:,直線.
(1) 當a為何值時,直線與圓C相切;
(2) 當直線與圓C相交于A、B兩點,且時,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓的右焦點為F,上頂點為A,P為C上任一點,MN是圓的一條直徑,若與AF平行且在y軸上的截距為的直線恰好與圓相切.
(Ⅰ)已知橢圓的離心率;
(Ⅱ)若的最大值為49,求橢圓C的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,設點是圓上的動點,過點作圓的兩條切線,切點分別為,切線分別交軸于兩點.
(1)求四邊形面積的最小值;
(2)是否存在點,使得線段被圓在點處的切線平分?若存在,求出點的縱坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案