中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
由直線y=x與曲線y=x2所圍圖形的面積S=   
【答案】分析:先根據題意畫出區域,然后依據圖形得到積分下限為0,積分上限為1,從而利用定積分表示出曲邊梯形的面積,最后用定積分的定義求出所求即可.
解答:解:先根據題意畫出圖形,得到積分上限為1,積分下限為0
直線y=x與曲線y=x2所圍圖形的面積S=∫1(x-x2)dx
而∫3(x-x2)dx=(-)|1=-=
∴曲邊梯形的面積是
故答案為:
點評:本題主要考查了學生會求出原函數的能力,以及考查了數形結合的思想,同時會利用定積分求圖形面積的能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

由直線y=x與曲線y=x2所圍圖形的面積S=
 

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

由直線y=x與曲線y=x2所圍圖形的面積S=________.

查看答案和解析>>

科目:高中數學 來源:2011年北京市朝陽區高考數學三模試卷(理科)(解析版) 題型:解答題

由直線y=x與曲線y=x2所圍圖形的面積S=   

查看答案和解析>>

科目:高中數學 來源:2010年廣東省江門市高考數學模擬試卷(理科)(解析版) 題型:解答題

由直線y=x與曲線y=x2所圍圖形的面積S=   

查看答案和解析>>

同步練習冊答案