中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
定義在R上的奇函數f(x)在[0,+∞)是增函數,判斷f(x)在(-∞,0)上的增減性,并證明你的結論.
分析:利用函數單調性的定義,結合奇函數的定義,即可得到結論.
解答:解:f(x)在(-∞,0)上單調遞增
設x1<x2<0,則-x1>-x2>0
根據假設:f(x)在[0,+∞)是增函數
所以f(-x1)>f(-x2
又f(x)是奇函數
所以-f(x1)>-f(x2
所以f(x1)<f(x2
所以f(x)在(-∞,0)上單調遞增
點評:本題考查函數單調性與奇偶性的結合,考查單調性的定義,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

定義在R上的奇函數f(x)滿足f(2x)=-2f(x),f(-1)=
1
2
,則f(2)的值為( 。
A、-1B、-2C、2D、1

查看答案和解析>>

科目:高中數學 來源: 題型:

定義在R上的奇函數f(x)在(0,+∞)上是增函數,又f(-3)=0,則不等式xf(x)<0的解集為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

定義在R上的奇函數f(x)滿足:當x>0時,f(x)=2010x+log2010x,則方程f(x)=0的實根的個數為
3
3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在R上的奇函數f(x),當x≥0時,f(x)=x3+x2,則f(x)=
x3+x2    x≥0
 
x3-x2     x<0
x3+x2    x≥0
 
x3-x2     x<0

查看答案和解析>>

同步練習冊答案