中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知集合P={x|-2≤x≤5},Q={x|k+1≤x≤2k-1}滿足P∩Q=Q,求實數k的取值范圍.
分析:由已知中集合P={x|-2≤x≤5},Q={x|k+1≤x≤2k-1}滿足P∩Q=Q,即Q⊆P,我們分Q=∅⊆P和Q≠∅⊆P兩種情況,分別求出滿足條件的實數k的取值范圍,最后綜合討論結果,即可得到答案.
解答:解:∵P∩Q=Q
∴Q⊆P
(1)當k+1>2k-1,即k<2時,Q=∅⊆P,滿足條件;
(2)當k+1≤2k-1,即k≥2時,
k+1≥-2
2k-1≤5

解得-3≤k≤3,此時2≤k≤3;
綜上所述,實數k的取值范圍為k≤3.
點評:本題考查的知識點是集合關系中的參數取值問題,其中根據集合包含關系的定義,構造關于k的不等式組,是解答本題的關鍵,解答中易忽略Q=∅時,也滿足條件,而錯解為2≤k≤3.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知集合P={x|1≤x≤10,x∈N },集合Q={ x|x2+x-6≤0,x∈R },則P∩Q=
{1,2}
{1,2}

查看答案和解析>>

科目:高中數學 來源: 題型:

已知集合P={(x,y)|y=
2-x2
}
,Q={(x,y)|y=-x+m},若P∩Q≠∅,則實數m的取值范圍是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知集合P={x|0≤x≤4},Q={y|0≤y≤2},下列從P到Q的各對應關系f不是函數的是
.(填序號)
f:x→y=
1
2
x
;  ②f:x→y=
1
3
x
;  ③f:x→y=
2
3
x
; ④f:x→y=
x

查看答案和解析>>

科目:高中數學 來源: 題型:

已知集合P={x|2≤x≤7},Q={x|x2-x-6=0,x∈R},則集合P∩Q是
{3}
{3}

查看答案和解析>>

科目:高中數學 來源: 題型:

已知集合P={x|x2=1},集合Q={x|ax=1},若P∩Q=Q,那么a的值是
1或-1或0
1或-1或0

查看答案和解析>>

同步練習冊答案