中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知向量a=(2,sinx),b=(cos2x,2cosx),則函數f(x)=a·b的最小正周期是
[     ]
A.
B.π
C.2π
D.4π
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在平面直角坐標系中,已知向量
a
=(x,y-4),
b
=(kx,y+4)
(k∈R),
a
b
,動點M(x,y)的軌跡為T.
(1)求軌跡T的方程,并說明該方程表示的曲線的形狀;
(2)當k=1時,已知O(0,0)、E(2,1),試探究是否存在這樣的點Q:Q是軌跡T內部
的整點(平面內橫、縱坐標均為整數的點稱為整點),且△OEQ的面積S△OEQ=2?
若存在,求出點Q的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(sinωx,-cosωx),
b
=(
3
cosωx,cosωx)(ω>0),函數f(x)=
a
b
+
1
2
,且函數f(x)=
3
sinωxcosωx-cos2ωx+
1
2
的圖象中任意兩相鄰對稱軸間的距離為π.
(1)求ω的值;
(2)已知在△ABC中,角A,B,C所對的邊分別為a,b,c,f(C)=
1
2
,且c=2
19
,△ABC的面積S=2
3
,求a+b的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(2cosx,sinx)
b
=(cosx,2
3
cosx)
,函數f(x)=
a
b
+1

(1)求函數f(x)的單調遞增區間.
(2)在△ABC中,a,b,c分別是角A、B、C的對邊,a=1且f(A)=3,求△ABC面積S的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(2cos
x
2
,1),
b
=(cos
π+x
2
,3cosx),設函數f(x)=(
a
-
b
)•
a

(1)若?x∈R,f(x)≤a(a∈R),求a的取值范圍;
(2)在△ABC中,角A、B、C所對的邊分別為a,b,c,且f(A)=4,a=
10
,求△ABC的面積S的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(cosωx,sinωx),
b
=(cosωx,
3
cosωx),其中(0<ω<2).函數f(x)=
a
b
-
1
2
,其圖象的一條對稱軸為x=
π
6

(1)求函數f(x)的表達式及單調遞增區間;
(2)在△ABC中,a、b、c分別為角A、B、C的對邊,S為其面積,若f(
A
2
)
=1,b=l,S△ABC=
3
,求BC邊上的中線AD的長.

查看答案和解析>>

同步練習冊答案