如圖,橢圓
的離心率為
,
軸被曲線
截得的線段長等于
的短軸長。
與
軸的交點為
,過坐標(biāo)原點
的直線
與
相交于點
,直線
分別與
相交于點
。![]()
(1)求
、
的方程;
(2)求證:
。
(3)記
的面積分別為
,若
,求
的取值范圍。
(1)![]()
;(2)見解析;(3)
.
解析試題分析:(1)利用橢圓的幾何性質(zhì),建立
的方程組即得;
(2)通過設(shè)直線
并聯(lián)立
應(yīng)用韋達(dá)定理及平面向量的坐標(biāo)運算證得
,從而得到
;
(3)通過設(shè)直線
,聯(lián)立方程組
,
;
聯(lián)立
,![]()
利用三角形面積公式分別計算
,用
表示,從而得到
.
試題解析:
(1)
(1分)
又
,得![]()
(2分)
(2)設(shè)直線
則
(3分)
=0
(5分)
(3)設(shè)直線![]()
,同理可得
(8分)![]()
同理可得![]()
(2分)
(13分)
考點:橢圓的幾何性質(zhì),直線與圓錐曲線的位置關(guān)系,韋達(dá)定理,平面向量的數(shù)量積,基本不等式.
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直線
,拋物線
,已知點
在拋物線
上,且拋物線
上的點到直線
的距離的最小值為
.![]()
(1)求直線
及拋物線
的方程;
(2)過點
的任一直線(不經(jīng)過點
)與拋物線
交于
、
兩點,直線
與直線
相交于點
,記直線
,
,
的斜率分別為
,
,
.問:是否存在實數(shù)
,使得
?若存在,試求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知中心在坐標(biāo)原點O的橢圓C經(jīng)過點A(2,3),且點F(2,0)為其右焦點.
(1)求橢圓C的方程;
(2)是否存在平行于OA的直線l,使得直線l與橢圓C有公共點,且直線OA與l的距離等于4?若存在,求出直線l的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,已知對于任意實數(shù)k,直線(
k+1)x+(k-
)y-(3k+
)=0恒過定點F.設(shè)橢圓C的中心在原點,一個焦點為F,且橢圓C上的點到F的最大距離為2+
.
(1)求橢圓C的方程;
(2)設(shè)(m,n)是橢圓C上的任意一點,圓O:x2+y2=r2(r>0)與橢圓C有4個相異公共點,試分別判斷圓O與直線l1:mx+ny=1和l2:mx+ny=4的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知一條曲線
在
軸右側(cè),
上每一點到點
的距離減去它到
軸距離的差都是1.
(1)求曲線
的方程;
(2)設(shè)直線
交曲線
于
兩點,線段
的中點為
,求直線
的一般式方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:
=1(a>b>0)上任一點P到兩個焦點的距離的和為2
,P與橢圓長軸兩頂點連線的斜率之積為-
.設(shè)直線l過橢圓C的右焦點F,交橢圓C于兩點A(x1,y1),B(x2,y2).
(1)若
=
(O為坐標(biāo)原點),求|y1-y2|的值;
(2)當(dāng)直線l與兩坐標(biāo)軸都不垂直時,在x軸上是否總存在點Q,使得直線QA,QB的傾斜角互為補(bǔ)角?若存在,求出點Q坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
=1上任一點P,由點P向x軸作垂線PQ,垂足為Q,設(shè)點M在PQ上,且
=2
,點M的軌跡為C.
(1)求曲線C的方程;
(2)過點D(0,-2)作直線l與曲線C交于A、B兩點,設(shè)N是過點
且平行于x軸的直線上一動點,且滿足
=
+
(O為原點),且四邊形OANB為矩形,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,焦距為
的橢圓
的兩個頂點分別為
和
,且
與n
,
共線.![]()
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)若直線
與橢圓
有兩個不同的交
點
和
,且原點
總在以
為直徑的圓的內(nèi)部,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線
,點
,過
的直線
交拋物線
于
兩點.
(1)若線段
中點的橫坐標(biāo)等于
,求直線
的斜率;
(2)設(shè)點
關(guān)于
軸的對稱點為
,求證:直線
過定點.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com