中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知數列{an}:a1a2,…,an(0≤a1≤a2…≤an),n≥3時具有性質P:對任意的i,j(1≤i≤j≤n),aj+ai與aj-ai兩數中至少有一個是該數列中的一項,現給出以下四個命題:
①數列0,1,3具有性質P;         ②數列0,2,4,6具有性質P;
③數列{an}具有性質P,則a1=0;    ④若數列a1,a2,a3(0≤a1<a2<a3)具有性質P,則a1+a3=2a2
其中真命題的序號為
②③④
②③④
.(所有正確命題的序號都寫上)
分析:根據數列:a1,a2,…an(0≤a1<a2…<an),n≥3時具有性質P,對任意i,j(1≤i≤j≤n),aj+ai與aj-ai兩數中至少有一個是該數列中的一項,逐一驗證,可知①錯誤,其余都正確.
解答:解:∵對任意i,j(1≤i≤j≤n),aj+ai與aj-ai兩數中至少有一個是該數列中的項,
①數列0,1,3中,a2+a3=1+3=4和a3-a2=3-1=2都不是該數列中的數,故①不正確;
②數列0,2,4,6,aj+ai與aj-ai(1≤i≤j≤3)兩數中都是該數列中的項,
并且a4-a3=2是該數列中的項,故②正確;
③若數列{an}具有性質P,去數列{an}中最大項an,則an+an=2an與an-an=0兩數中至少有一個是該數列中的一項,而2an不是該數列中的項,
∴0是該數列中的項,
又由0≤a1≤a2…≤an
∴a1=0;故③正確;
④∵數列a1,a2,a3具有性質P,0≤a1<a2<a3
∴a1+a3與a3-a1至少有一個是該數列中的一項,且a1=0,
1°若a1+a3是該數列中的一項,則a1+a3=a3
∴a1=0,易知a2+a3不是該數列的項
∴a3-a2=a2,∴a1+a3=2a2
2°若a3-a1是該數列中的一項,則a3-a1=a1或a2或a3
①若a3-a1=a3同1°,
②若a3-a1=a2,則a3=a2,與a2<a3矛盾,
③a3-a1=a1,則a3=2a1
綜上a1+a3=2a2.故④正確.
故答案為:②③④.
點評:考查數列的綜合應用,此題能很好的考查學生的應用知識分析、解決問題的能力,側重于對能力的考查,屬中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知數列{an}滿足
a1-1
2
+
a2-1
22
+…+
an-1
2n
=n2+n(n∈N*)

(I)求數列{an}的通項公式;
(II)求數列{an}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}滿足a 1=
2
5
,且對任意n∈N*,都有
an
an+1
=
4an+2
an+1+2

(1)求證:數列{
1
an
}為等差數列,并求{an}的通項公式;
(2)令bn=an•an+1,Tn=b1+b2+b3+…+bn,求證:Tn
4
15

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}滿足a 1=
2
5
,且對任意n∈N+,都有
an
an+1
=
4an+2
an+1+2

(1)求{an}的通項公式;
(2)令bn=an•an+1,Tn=b1+b2+b3+…+bn,求證:Tn
4
15

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}滿足a n+an+1=
1
2
(n∈N+)
,a 1=-
1
2
,Sn是數列{an}的前n項和,則S2013=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}:,,,…,,…,其中a是大于零的常數,記{an}的前n項和為Sn,計算S1,S2,S3的值,由此推出計算Sn的公式,并用數學歸納法加以證明.

查看答案和解析>>

同步練習冊答案