中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知二次函數f(x)=ax2+bx-1,且不等式|f(x)|≤2|2x2-1|的實數x恒成立,數列{an}滿足a1=1,an+1=f(
an+1
)(n∈N*)

(1)求a,b的值;
(2)求數列{an}的通項公式;
(3)求證
a1
a2
+
a2
a3
+…+
an
an+1
n
2
-
11
35
(n∈N*)
分析:(1)由不等式|f(x)|≤2|2x2-1|的實數x恒成立,由x=±
2
2
時,2|2x2-1|=0,結合絕對值的非負性,可得f(
2
2
)=f(-
2
2
)=0,由此構造方程可求出a,b的值;
(2)由f(x)=2x2+1,可得an+1=2an+1,進而可得數列{an+1}是以2為首項,2為公比的等比數列,求出數列{an+1}的通項公式后,可得數列{an}的通項公式;
(3)由
ak
ak+1
=
2k-1
2k+1-1
1
2
-
1
15
1
2k-2
(k≥3),利用放縮法,可證得
a1
a2
+
a2
a3
+…+
an
an+1
n
2
-
11
35
(n∈N*)
解答:解:(1)∵不等式|f(x)|≤2|2x2-1|對任意的實數x恒成立.且當x=±
2
2
時,2|2x2-1|=0
∴|f(
2
2
)|≤0,且|f(-
2
2
)|≤0,
即f(
2
2
)=f(-
2
2
)=0
1
2
a+
2
2
b-1=0
1
2
a-
2
2
b-1=0

解得:a=2,b=0;
(2)由 (1)知f(x)=2x2+1,
an+1=f(
an+1
)
=2an+1,
an+1+1=2(an+1)
又a1=1,
∴數列{an+1}是以a1+1=2為首項,2為公比的等比數列.
∴an+1=2n
從而數列{an}的通項公式an=2n-1;
(3)由 (2)知an=2n-1,
ak
ak+1
=
2k-1
2k+1-1
=
1
2
-
1
2(2K+1-1)
=
1
2
-
1
15•2k-2+(2k-2-2)
1
2
-
1
15
1
2k-2
(k≥3)
a1
a2
+
a2
a3
+…+
an
an+1
1
3
+
3
7
+
n-2
2
-
1
15
•(
1
2
+
1
22
+…+
1
2n-2
)=
n
2
-
5
21
-
1
15
•(1-
1
2n-2
)>
n
2
-
5
21
-
1
15
=
n
2
-
32
105
n
2
-
11
35

綜上有
a1
a2
+
a2
a3
+…+
an
an+1
n
2
-
11
35
(n∈N*)
點評:本題考查的知識點是數列與函數的綜合應用,數列與不等式的綜合應用,求數列的通項公式,其中(1)的關鍵是得到f(
2
2
)=f(-
2
2
)=0,(2)的關鍵是得到數列{an+1}是以2為首項,2為公比的等比數列,(3)的關鍵是利用放縮法對不等式進行變形.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知二次函數f(x)=x2+2(m-2)x+m-m2
(I)若函數的圖象經過原點,且滿足f(2)=0,求實數m的值.
(Ⅱ)若函數在區間[2,+∞)上為增函數,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知二次函數f(x)=ax2+bx+c(a≠0)的圖象過點(0,1),且與x軸有唯一的交點(-1,0).
(Ⅰ)求f(x)的表達式;
(Ⅱ)設函數F(x)=f(x)-kx,x∈[-2,2],記此函數的最小值為g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知二次函數f(x)=x2-16x+q+3.
(1)若函數在區間[-1,1]上存在零點,求實數q的取值范圍;
(2)若記區間[a,b]的長度為b-a.問:是否存在常數t(t≥0),當x∈[t,10]時,f(x)的值域為區間D,且D的長度為12-t?請對你所得的結論給出證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•廣州一模)已知二次函數f(x)=x2+ax+m+1,關于x的不等式f(x)<(2m-1)x+1-m2的解集為(m,m+1),其中m為非零常數.設g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值時,函數φ(x)=g(x)-kln(x-1)存在極值點,并求出極值點;
(3)若m=1,且x>0,求證:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)已知二次函數f(x)的圖象與x軸的兩交點為(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函數f(x)的圖象的頂點是(-1,2),且經過原點,求f(x)的解析式.

查看答案和解析>>

同步練習冊答案