如圖,在四棱錐E—ABCD中,底面ABCD為邊長為5的正方形,AE
平面CDE,AE=3.![]()
(1)若
為
的中點,求證:
平面
;
(2)求直線
與平面
所成角的正弦值.
科目:高中數學 來源: 題型:解答題
如圖,五面體中,四邊形ABCD是矩形,DA
面ABEF,且DA=1,AB//EF,
,P、Q、M分別為AE、BD、EF的中點.![]()
(1)求證:PQ//平面BCE;
(2)求證:AM
平面ADF;
(3)求二面角A-DF-E的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在四棱錐P-ABCD中,側面PCD
底面ABCD,PD
CD,底面ABCD是直角梯形,AB∥DC,
ADC-900,AB=AD=PD=1.CD=2.![]()
(I)求證:BC
平面PBD:
(II)設E為側棱PC上異于端點的一點,
,試確定
的值,使得二面角
E-BD-P的大小為
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知四棱錐
,底面
是平行四邊形,點
在平面
上的射影
在
邊上,且
,![]()
.![]()
(Ⅰ)設
是
的中點,求異面直線
與
所成角的余弦值;
(Ⅱ)設點
在棱
上,且
.求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900.![]()
(1)求證:PC⊥BC;
(2)求點A到平面PBC的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1=
.![]()
(1)證明:平面A1BD∥平面CD1B1;
(2)求三棱柱ABD-A1B1D1的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,直角梯形
中,
,
,
,
,
,過
作
,垂足為
.
、
分別是
、
的中點.現將
沿
折起,使二面角
的平面角為
.![]()
![]()
(1)求證:平面
平面
;
(2)求直線
與面
所成角的正弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com