中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知橢圓方程為
x2
25-k
+
y2
k-9
=1
,則k的取值范圍為(  )
分析:根據題意,方程
x2
25-k
+
y2
k-9
=1
表示橢圓,則 x2,y2項的系數均為正數且不相等列出不等關系,解可得答案.
解答:解:方程
x2
25-k
+
y2
k-9
=1
表示橢圓,則
25-k>0
k-9>0
25-k≠k-9
,即k∈(9,17)∪(17,25).
故選C.
點評:本題考查橢圓的標準方程,注意其標準方程的形式與圓、雙曲線的標準方程的異同,考查運算能力,屬基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網已知橢圓C:
x2
2
+y2=1
的左、右焦點分別為F1,F2,下頂點為A,點P是橢圓上任一點,⊙M是以PF2為直徑的圓.
(Ⅰ)當⊙M的面積為
π
8
時,求PA所在直線的方程;
(Ⅱ)當⊙M與直線AF1相切時,求⊙M的方程;
(Ⅲ)求證:⊙M總與某個定圓相切.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1
的兩個焦點分別為F1(0,1),F2(0,1),橢圓的弦AB過點F2,且△ABF1的周長為4
2
,則橢圓E的方程是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•許昌三模)已知橢圓C:
x2
2
+y2=1
的左右焦點分別為F1、F2,下頂點為A,點P是橢圓上任意一點,圓M是以PF2為直徑的圓.
(I)當圓M的面積為
π
8
時,求PA所在直線的方程;
(Ⅱ)當圓M與直線AF1相切時,求圓M的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓方程為C:
x2
2
+y2
=1,它的左、右焦點分別為F1、F2.點P(x0,y0)為第一象限內的點.直線PF1和PF2與橢圓的交點分別為A、B和C、D,O為坐標原點.
(1)求橢圓上的點與兩焦點連線的最大夾角;
(2)設直線PF1、PF2的斜率分別為k1、k2.試找出使得直線OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD滿足kOA+kOB+kOC+kOD=0成立的條件(用k1、k2表示).
(3)又已知點E為拋物線y2=2px(p>0)上一點,直線F2E與橢圓C的交點G在y軸的左側,且滿足
EG
=2
F2E
,求p的最大值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓方程為C:
x2
2
+y2
=1,它的左、右焦點分別為F1、F2.點P(x0,y0)為第一象限內的點.直線PF1和PF2與橢圓的交點分別為A、B和C、D,O為坐標原點.
(1)求橢圓上的點與兩焦點連線的最大夾角;
(2)設直線PF1、PF2的斜率分別為k1、k2.試找出使得直線OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD滿足kOA+kOB+kOC+kOD=0成立的條件(用k1、k2表示).
(3)又已知點E為拋物線y2=2px(p>0)上一點,直線F2E與橢圓C的交點G在y軸的左側,且滿足
EG
=2
F2E
,求p的最大值.

查看答案和解析>>

同步練習冊答案