如圖,已知四棱錐
的底面為等腰梯形,
∥
,
,垂足為
,
是四棱錐的高。![]()
(Ⅰ)證明:平面![]()
平面
;
(Ⅱ)若
,
60°,求四棱錐
的體積。
(1)由PH是四棱錐P-ABCD的高,得到AC
PH,又AC
BD,推出AC
平面PBD.
故平面PAC
平面PBD.
(2)
解析試題分析:(1)因?yàn)镻H是四棱錐P-ABCD的高。
所以AC
PH,又AC
BD,PH,BD都在平面PHD內(nèi),且PH
BD=H.
所以AC
平面PBD.
故平面PAC
平面PBD.
(2)因?yàn)锳BCD為等腰梯形,AB
CD,AC
BD,AB=
.
所以HA=HB=
.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e5/2/1tpnj2.png" style="vertical-align:middle;" />APB=
ADR=600
所以PA=PB=
,HD=HC=1.
可得PH=
.
等腰梯形ABCD的面積為S=
AC x BD = 2+
.
所以四棱錐的體積為V=
x(2+
)x
=
考點(diǎn):本題主要考查立體幾何中的垂直關(guān)系,體積的計(jì)算。
點(diǎn)評(píng):中檔題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離、體積的計(jì)算。在計(jì)算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計(jì)算”的步驟,利用向量則能簡(jiǎn)化證明過程。本題(I)較為簡(jiǎn)單,(II)則體現(xiàn)了“一作、二證、三計(jì)算”的解題步驟。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在長(zhǎng)方體
中,
,
,
為
中點(diǎn).(Ⅰ)證明:
;(Ⅱ)求
與平面
所成角的正弦值;(Ⅲ)在棱
上是否存在一點(diǎn)
,使得
∥平面
?若存在,求
的長(zhǎng);若不存在,說明理由.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,S是正方形ABCD所在平面外一點(diǎn),且SD⊥面ABCD ,AB=1,SB=
.![]()
(1)求證:BC
SC;
(2) 設(shè)M為棱SA中點(diǎn),求異面直線DM與SB所成角的大小
(3) 求面ASD與面BSC所成二面角的大小;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四邊形
中,
為正三角形,
,
,
與
交于
點(diǎn).將
沿邊
折起,使
點(diǎn)至
點(diǎn),已知
與平面
所成的角為
,且
點(diǎn)在平面
內(nèi)的射影落在
內(nèi).![]()
(Ⅰ)求證:
平面
;
(Ⅱ)若已知二面角
的余弦值為
,求
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐
中,
底面
,
,
,
,
.![]()
(1)若E是PC的中點(diǎn),證明:
平面
;
(2)試在線段PC上確定一點(diǎn)E,使二面角P- AB- E的大小為
,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)在三棱錐
中,
是邊長(zhǎng)為4的正三角形,
,
,
、
分別是
、
的中點(diǎn);![]()
(1)證明:平面![]()
平面
;
(2)求直線
與平面
所成角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示在四棱錐P—ABCD中,平面PAB⊥平面ABCD,底面ABCD是邊長(zhǎng)為2的正方形,△PAB為等邊三角形。(12分)![]()
(1)求PC和平面ABCD所成角的大小;
(2)求二面角B─AC─P的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
在直三棱柱
中, AC=4,CB=2,AA1=2,
,E、F分別是
的中點(diǎn)。![]()
(1)證明:平面
平面
;
(2)證明:
平面ABE;
(3)設(shè)P是BE的中點(diǎn),求三棱錐
的體積。
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com