(本題滿分12分)已知
是等比數(shù)列
的前
項(xiàng)和,且
.
(Ⅰ)求數(shù)列
的通項(xiàng)公式
;
(Ⅱ)若數(shù)列
是單調(diào)遞減數(shù)列,求實(shí)數(shù)
的取值范圍.
(Ⅰ)
(Ⅱ)![]()
解析試題分析:(Ⅰ) 因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/cc/f/qoq9p.png" style="vertical-align:middle;" />,
,所以![]()
,
,
兩式相除得
,所以
,
.
所以
. ……4分
(Ⅱ)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f8/6/1dyp43.png" style="vertical-align:middle;" />,所以
,
由題意可知對(duì)任意
,數(shù)列
單調(diào)遞減,所以
,
即![]()
,即
對(duì)任意
恒成立, ……6分
當(dāng)
是奇數(shù)時(shí),
,當(dāng)
,
取得最大值-1,所以
;
當(dāng)
是偶數(shù)時(shí),
,當(dāng)
,
取得最小值
,所以![]()
.
綜上可知,
,即實(shí)數(shù)
的取值范圍是
. ……12分
考點(diǎn):本小題主要考查由數(shù)列的前n項(xiàng)和求數(shù)列的通項(xiàng)公式,和已知數(shù)列的單調(diào)性求參數(shù)的取值范圍,考查學(xué)生的運(yùn)算求解能力和分類討論思想的應(yīng)用.
點(diǎn)評(píng):數(shù)列是一種特殊的函數(shù),所以討論數(shù)列的性質(zhì)時(shí)可以借助函數(shù)中的解法.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分14分)
設(shè)數(shù)列{
}的前n項(xiàng)和為
,且
=1,
,數(shù)列{
}滿足
,點(diǎn)P(
,
)在直線x―y+2=0上,
.
(1)求數(shù)列{
},{
}的通項(xiàng)公式;
(2)設(shè)
,求數(shù)列{
}的前n項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列
前
項(xiàng)和
滿足
,等差數(shù)列
滿足![]()
(1)求數(shù)列![]()
的通項(xiàng)公式
(2)設(shè)
,數(shù)列
的前
項(xiàng)和為
,問
的最小正整數(shù)n是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(14分)數(shù)列
中,
,
![]()
(1)求證:
時(shí),
是等比數(shù)列,并求
通項(xiàng)公式。
(2)設(shè)
,
,
求:數(shù)列
的前n項(xiàng)的和
。
(3)設(shè)
、
、
。記
,數(shù)列
的前n項(xiàng)和
。證明:
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題12分)
已知數(shù)列
的前
項(xiàng)和
滿足
,等差數(shù)列
滿足
,
。
(1)求數(shù)列
、
的通項(xiàng)公式;
(2)設(shè)
,數(shù)列
的前
項(xiàng)和為
,問
>
的最小正整數(shù)
是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分14分)
已知
是等差數(shù)列,其中
.
(1)求通項(xiàng)公式
;
(2)數(shù)列
從哪一項(xiàng)開始小于0;
(3)求
值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
投擲一枚均勻硬幣2次,記2次都是正面向上的概率為
,恰好
次正面向上的概率為
;等比數(shù)列
滿足:
,![]()
(I)求等比數(shù)列
的通項(xiàng)公式;
(II)設(shè)等差數(shù)列
滿足:
,
,求等差數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分14分)已知數(shù)列
中,
,
,其前
項(xiàng)和
滿足
(
,
).
(Ⅰ)求證:數(shù)列
為等差數(shù)列,并求
的通項(xiàng)公式;
(Ⅱ)設(shè)
, 求數(shù)列
的前
項(xiàng)和
;
(Ⅲ)設(shè)
(
為非零整數(shù),
),試確定
的值,使得對(duì)任意
,有
恒成立.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com