中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知橢圓的離心率為,右焦點到直線的距離為
(1)求橢圓的方程;
(2)過橢圓右焦點F2斜率為)的直線與橢圓相交于兩點,為橢圓的右頂點,直線分別交直線于點,線段的中點為,記直線的斜率為,求證:為定值.
(1).(2)證明見解析.

試題分析:(1)利用橢圓的幾何性質,建立的方程組即得;
(2)要證明為定值,須從確定兩直線斜率的表達式入手.根據題目的條件,應注意設出的直線方程,并與橢圓方程聯立,應用韋達定理,建立與坐標的聯系;確定的坐標,將斜率用坐標表示.得到,的關系即得證.
設過點 的直線方程為:,,點
代入橢圓整理得: 
應用韋達定理   ;
根據直線的方程為:,直線的方程為:
,得點,,點 ;
由直線 的斜率為

代入上式得到,的關系即得證.
試題解析:(1)由題意得,,                      2分
所以,,所求橢圓方程為.                  4分
(2)設過點 的直線方程為:
設點,點                                         5分
將直線方程代入橢圓
整理得:                           6分
因為點在橢圓內,所以直線和橢圓都相交,恒成立,
                         7分
直線的方程為:,直線的方程為:
,得點,,
所以點的坐標                            9分
直線 的斜率為
      11分
代入上式得:

所以為定值                                       13分
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的兩個焦點分別為,離心率.
(1)求橢圓的方程;
(2)設直線)與橢圓交于、兩點,線段 的垂直平分線交軸于點,當變化時,求面積的最大值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

A,B分別是直線yxy=-x上的動點,且|AB|=,設O為坐標原點,動點P滿足.
(1)求點P的軌跡方程;
(2)過點(,0)作兩條互相垂直的直線l1l2,直線l1,l2與點P的軌跡的相交弦分別為CDEF,設CDEF的弦中點分別為M,N,求證:直線MN恒過一個定點.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

直線l與橢圓+=1(a>b>0)交于A(x1,y1),B(x2,y2)兩點,已知m=(ax1,by1),n=(ax2,by2),若m⊥n且橢圓的離心離e=,又橢圓經過點(,1),O為坐標原點.
(1)求橢圓的方程.
(2)試問:△AOB的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

橢圓的離心率為,且經過點過坐標原點的直線均不在坐標軸上,與橢圓M交于A、C兩點,直線與橢圓M交于B、D兩點
(1)求橢圓M的方程;
(2)若平行四邊形ABCD為菱形,求菱形ABCD的面積的最小值

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,已知橢圓的中心在坐標原點,焦點在x軸上,長軸長是短軸長的2倍,且經過點M(2,1),平行于OM的直線ly軸上的截距為m,直線l與橢圓相交于A,B兩個不同點.

(1)求實數m的取值范圍;
(2)證明:直線MA,MBx軸圍成的三角形是等腰三角形.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設一個焦點為,且離心率的橢圓上下兩頂點分別為,直線交橢圓兩點,直線與直線交于點.
(1)求橢圓的方程;
(2)求證:三點共線.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知F是橢圓C:+=1(a>b>0)的右焦點,點P在橢圓C上,線段PF與圓(x-2+y2=相切于點Q,且=2,則橢圓C的離心率等于(  )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

如圖,F1,F2是橢圓C1+y2=1與雙曲線C2的公共焦點,A,B分別是C1,C2在第二、四象限的公共點.若四邊形AF1BF2為矩形, 則C2的離心率是________.

查看答案和解析>>

同步練習冊答案