中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
對于實數a,將滿足“0≤y<1且x-y為整數”的實數y稱為實數x的小數部分,用記號||x||表示,對于實數a,無窮數列{an}滿足如下條件:a1=|a,an+1=其中n=1,2,3,…
(1)若a=,求數列{an};
(2)當a時,對任意的n∈N*,都有an=a,求符合要求的實數a構成的集合A.
(3)若a是有理數,設a= (p 是整數,q是正整數,p、q互質),問對于大于q的任意正整數n,是否都有an=0成立,并證明你的結論.
【答案】分析:(1)由題設知=,a2====,由此能求出
(2)由a1=||a||=a,知,1<<4,由此進行分類討論,能求出符合要求的實數a構成的集合A.
(3)成立.證明:由a是有理數,可知對一切正整數n,an為0或正有理數,可設,由此利用分類討論思想能夠推導出數列{am}中am以及它之后的項均為0,所以對不大q的自然數n,都有an=0.
解答:解:(1)∵滿足“0≤y<1且x-y為整數”的實數y稱為實數x的小數部分,用記號||x||表示,
a1=,an+1=其中n=1,2,3,…
=,a2====,…(2分)
ak=,則ak+1===
所以.…(4分)
(2)∵a1=||a||=a,∴,∴1<<4,
①當,即1<<2時,==-1=a,
所以a2+a-1=0,
解得a=,(a=∉(,1),舍去).…(6分)
②當,即2≤<3時,a2==
所以a2+2a-1=0,
解得a==,(a=-∉(],舍去).…(7分)
③當,即3<4時,
所以a2+3a-1=0,
解得a=(a=,舍去).…(9分)
綜上,{a=,a=,a=}.…(10分)
(3)成立.…(11分)
證明:由a是有理數,可知對一切正整數n,an為0或正有理數,
可設(pn是非負整數,qn是正整數,且既約).…(12分)
①由,得0≤p1≤q;…(13分)
②若pn≠0,設qn=apn+β(0≤βPn,α,β是非負整數)
=a+,而由,得=
==
故Pn+1=β,qn+1=Pn,得0≤Pn+1<Pn.…(14分)
若Pn=0,則pn+1=0,…(15分)
若a1,a2,a3,…,aq均不為0,則這q正整數互不相同且都小于q,
但小于q的正整數共有q-1個,矛盾.…(17分)
故a1,a2,a3,…,aq中至少有一個為0,即存在m(1≤m≤q),使得am=0.
從而數列{am}中am以及它之后的項均為0,所以對不大q的自然數n,都有an=0.…(18分)
(其它解法可參考給分)
點評:本題考查數列的通項公式的求法,考查集合的求法,考查an=0是否成立的判斷與證明.綜合性強,計算量大,難度較高,對數學思維能力的要求較高.解題時要認真審題,注意等價轉化思想和分類討論思想的合理運用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•房山區一模)對于實數x,將滿足“0≤y<1且x-y為整數”的實數y稱為實數x的小數部分,用記號<x>表示.例<1.2>=0.2,<-1.2>=0.8,<
8
7
>=
1
7
.對于實數a,無窮數列{an}滿足如下條件:a1=<a>,an+1=
1
an
 an≠0
0        an=0
,其中n=1,2,3,….
(Ⅰ)若a=
2
,求數列{an}的通項公式;
(Ⅱ)當a>
1
4
時,對任意的n∈N+,都有an=a,求符合要求的實數a構成的集合A;
(Ⅲ)若a是有理數,設a=
p
q
 (p是整數,q是正整數,p,q互質),對于大于q的任意正整數n,是否都有an=0成立,證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•楊浦區一模)對于實數a,將滿足“0≤y<1且x-y為整數”的實數y稱為實數x的小數部分,用記號||x||表示,對于實數a,無窮數列{an}滿足如下條件:a1=|a,an+1=
||
1
an
 ||,an≠0
0,an=0
其中n=1,2,3,…
(1)若a=
2
,求數列{an};
(2)當a
1
4
時,對任意的n∈N*,都有an=a,求符合要求的實數a構成的集合A.
(3)若a是有理數,設a=
p
q
 (p 是整數,q是正整數,p、q互質),問對于大于q的任意正整數n,是否都有an=0成立,并證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

對于實數x,將滿足“0≤y<1且x-y為整數”的實數y稱為實數x的小數部分,用記號{x}表示.例如{1.2}=0.2,{-1.2}=0.8,{
8
7
}=
1
7
.對于實數a,無窮數列{an}滿足如下條件:a1={a},an+1=
1
an
  ,an≠0
0, an=0
  其中n=1,2,3,….
(1)若a=
2
,求a2,a3 并猜想數列{a}的通項公式(不需要證明);
(2)當a>
1
4
時,對任意的n∈N*,都有an=a,求符合要求的實數a構成的集合A;
(3)若a是有理數,設a=
p
q
 (p是整數,q是正整數,p,q互質),對于大于q的任意正整數n,是否都有an=0成立,證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

對于實數x,將滿足“0≤y<1且x-y為整數”的實數y稱為實數x的小數部分,用記號<x>表示.對于實數a,無窮數列{an}滿足如下條件:( i )a1=<a>;(ii)an+1=
1
an
>,(an≠0)
0,(an=0)
,當a
1
2
時,對任意的自然數n都有an=a,則實數a=
 

查看答案和解析>>

同步練習冊答案