中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

設數列{an}滿足an1=2ann2?4n1

1)若a1?3,求證:存在abc為常數),使數列{anf(n)}是等比數列,并求出數列{an}的通項公式;

2)若an是一個等差數列{bn}的前n項和,求首項a1的值與數列{bn}的通項公式

 

【答案】

1,(2

【解析】

試題分析:(1)解一般數列問題,主要從項的關系進行分析.本題項的關系是:型,解決方法為:構造等比數列,再利用等式對應關系得出的解析式,(2)解等差數列問題,主要從待定系數對應關系出發.,則利用等式對應關系得出,再利用等差數列前n項和公式

試題解析:解(1

2

也即 4

6

所以存在使數列是公比為2的等比數列 8

10

2

12

14

是等差數列, 16

考點:構造法求數列通項,等差數列前n項和公式,由和項求等差數列通項.

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設數列{an}滿足a1=1,且對任意的n∈N*,點Pn(n,an)都有
.
PnPn+1
=(1,2)
,則數列{an}的通項公式為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•日照一模)若數列{bn}:對于n∈N*,都有bn+2-bn=d(常數),則稱數列{bn}是公差為d的準等差數列.如:若cn=
4n-1,當n為奇數時
4n+9,當n為偶數時.
則{cn}
是公差為8的準等差數列.
(I)設數列{an}滿足:a1=a,對于n∈N*,都有an+an+1=2n.求證:{an}為準等差數列,并求其通項公式:
(Ⅱ)設(I)中的數列{an}的前n項和為Sn,試研究:是否存在實數a,使得數列Sn有連續的兩項都等于50.若存在,請求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•日照一模)若數列{bn}:對于n∈N*,都有bn+2-bn=d(常數),則稱數列{bn}是公差為d的準等差數列.如數列cn:若cn=
4n-1,當n為奇數時
4n+9,當n為偶數時
,則數列{cn}是公差為8的準等差數列.設數列{an}滿足:a1=a,對于n∈N*,都有an+an+1=2n.
(Ⅰ)求證:{an}為準等差數列;
(Ⅱ)求證:{an}的通項公式及前20項和S20

查看答案和解析>>

科目:高中數學 來源: 題型:

設數列{an}滿足a1=1,a2+a4=6,且對任意n∈N*,函數f(x)=(an-an+1+an+2)x+an+1?cosx-an+2sinx滿足f′(
π
2
)=0
cn=an+
1
2an
,則數列{cn}的前n項和Sn為(  )
A、
n2+n
2
-
1
2n
B、
n2+n+4
2
-
1
2n-1
C、
n2+n+2
2
-
1
2n
D、
n2+n+4
2
-
1
2n

查看答案和解析>>

科目:高中數學 來源: 題型:

設數列{an}滿足:a1=2,an+1=1-
1
an
,令An=a1a2an,則A2013
=(  )

查看答案和解析>>

同步練習冊答案