(本小題滿分12分) 求滿足下列條件的橢圓的標(biāo)準(zhǔn)方程.
(1)焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過兩點(diǎn)
;
(2)經(jīng)過點(diǎn)(2,-3)且與橢圓
具有共同的焦點(diǎn).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知拋物線
的頂點(diǎn)為坐標(biāo)原點(diǎn),焦點(diǎn)在
軸上. 且經(jīng)過點(diǎn)
,
(1)求拋物線
的方程;
(2)若動直線
過點(diǎn)
,交拋物線
于
兩點(diǎn),是否存在垂直于
軸的直線
被以
為直徑的圓截得的弦長為定值?若存在,求出
的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分) 已知橢圓E:
=1(a>b>o)的離心率e=
,且經(jīng)過點(diǎn)(
,1),O為坐標(biāo)原點(diǎn)。![]()
(Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;
(Ⅱ)圓O是以橢圓E的長軸為直徑的圓,M是直線x=-4在x軸上方的一點(diǎn),過M作圓O的兩條切線,切點(diǎn)分別為P、Q,當(dāng)∠PMQ=60°時,求直線PQ的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知橢圓![]()
的離心率為
,定點(diǎn)
,橢圓短軸的端點(diǎn)是
,
,且
.
(1)求橢圓
的方程;
(2)設(shè)過點(diǎn)
且斜率不為
的直線交橢圓
于
,
兩點(diǎn).試問
軸上是否存在定點(diǎn)
,使
平分
?若存在,求出點(diǎn)
的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓O:
交
軸于A,B兩點(diǎn),曲線C是以
為長軸,離心率為
的橢圓,其左焦點(diǎn)為F.若P是圓O上一點(diǎn)連結(jié)PF,過原點(diǎn)O作直線PF的垂線交橢圓C的左準(zhǔn)線于點(diǎn)Q.![]()
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)P的坐標(biāo)為(1,1),求證:直線PQ與圓
相切;
(3)試探究:當(dāng)點(diǎn)P在圓O上運(yùn)動時(不與A、B重合),直線PQ與圓O是否保持相切的位置關(guān)系?若是,請證明;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,設(shè)橢圓的中心為原點(diǎn)O,長軸在x軸上,上頂點(diǎn)為A,左右焦點(diǎn)分別為
,線段
的中點(diǎn)分別為
,且△
是面積為4的直角三角形.
(Ⅰ)求該橢圓的離心率和標(biāo)準(zhǔn)方程;
(Ⅱ)過
做直線
交橢圓于P,Q兩點(diǎn),使
,求直線
的方程.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
已知橢圓C:
(a>b>0)的離心率為
,短軸一個端點(diǎn)到右焦點(diǎn)的距離為3.
(1)求橢圓C的方程;
(2)過橢圓C上的動點(diǎn)P引圓O:x2+y2=b2的兩條切線PA、PB,A、B分別為切點(diǎn),試探究橢圓C上是否存在點(diǎn)P,由點(diǎn)P向圓O所引的兩條切線互相垂直?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分15分)已知橢圓
經(jīng)過點(diǎn)
,其離心率為
.
(1) 求橢圓
的方程;
(2)設(shè)直線
與橢圓
相交于
兩點(diǎn),以線段
為鄰邊作平行四邊形
,其中頂點(diǎn)
在橢圓
上,
為坐標(biāo)原點(diǎn).求
到直線
的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓E:
(a,b>0)過M(2,
) ,N(
,1)兩點(diǎn),O為坐標(biāo)原點(diǎn),
(1)求橢圓E的方程;
(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點(diǎn)A,B,且
?若存在,寫出該圓的方程,若不存在說明理由。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com