中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
關于函數f(x)=2sin(3x-
3
4
π)
,有下列命題:
①其最小正周期為
2
3
π
;     
②其圖象由y=2sin3x向左平移
π
4
個單位而得到;
③其表達式寫成f(x)=2cos(3x+
3
4
π)
;
④在x∈[
π
12
5
12
π]
為單調遞增函數;
則其中真命題的個數是( 。
分析:由函數f(x)=2sin(3x-
3
4
π)
,利用三角函數的性質,逐個進行判斷.
解答:解:∵函數f(x)=2sin(3x-
3
4
π)

∴其最小正周期T=
3
,
其圖象由y=2sin3x向右平移
π
4
個單位得到,
其表達式寫成f(x)=2cos(3x+
3
4
π)

x∈[
π
12
,
5
12
π]
為單調遞增函數.
故①③④對,②錯.
故選C.
點評:本題考查命題的真假判斷,解題時要認真審題,注意三角函數的性質的合理運用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在實數集R中定義一種運算“*”,對任意a,b∈R,a*b為唯一確定的實數,且具有性質:
(1)對任意a,b∈R,a*b=b*a;
(2)對任意a∈R,a*0=a;
(3)對任意a,b∈R,(a*b)*c=c*(ab)+(a*c)+(c*b)-2c.
關于函數f(x)=(2x)*
1
2x
的性質,有如下說法:
①函數f(x)的最小值為3;
②函數f(x)為奇函數;
③函數f(x)的單調遞增區間為(-∞,-
1
2
),(
1
2
,+∞)

其中所有正確說法的個數為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
2,x>k
x2+4x+2,x≤k
,若關于x的方程f(x)=x恰有三個不同的實根,則k的取值范圍為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

在實數集R中定義一種運算“*”,對于任意給定的a,b∈R,a*b為唯一確定的實數,且具有性質;
(1)對任意a,b∈R,a*b=b*a;
(2)對任意a∈R,a*0=a;
(3)對任意a,b∈R,(a*b)*c=c*(ab)+(a*c)+(c*b)-2c.
關于函數f(x)=(3x)*(
1
3x
)
的性質,有如下說法:
①函數f(x)的最小值為3;
②函數f(x)為奇函數;
③函數f(x)的單調遞增區間為(-∞,-
1
3
),(
1
3
,+∞)

其中所有正確說法的序號為

查看答案和解析>>

科目:高中數學 來源: 題型:

關于函數f(x)=2|x+
1
x
|
,下列命題判斷錯誤的是(  )

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

關于函數f(x)=2|x+
1
x
|
,下列命題判斷錯誤的是( 。
A.圖象關于原點成中心對稱
B.值域為[4,+∞)
C.在(-∞,-1]上是減函數
D.在(0,1]上是減函數

查看答案和解析>>

同步練習冊答案