(本小題滿分14分)
已知集合
是滿足下列性質的函數
的全體, 存在非零常數
, 對任意
, 有
成立.
(1) 函數
是否屬于集合
?說明理由;
(2) 設
, 且
, 已知當
時,
,
求當
時,
的解析式.
(3)若函數
,求實數
的取值范圍.
(1)
.
(2)當
時,
.
(3){k|k= nπ, n∈Z}
【解析】(1) 假設函數
屬于集合
, 則存在非零常數
, 對任意
, 有
成立,即:
成立.在不成立的情況下,易用反例說明.因而 令
, 則
, 與題矛盾. 故
.
(2)解決本題的關鍵是
,根據1<x+4<2,從而根據
時,
求出f(x)的表達式.
(3) 解本題應討論當k=0和k≠0兩種情況.
然后解決本題的突破口是對任意x∈R,有f(x+T)=T f(x)成立,即sin(kx+kT)=Tsinkx
因為k≠0,且x∈R,所以kx∈R,kx+kT∈R,
于是sinkx ∈[-1,1],sin(kx+kT) ∈[-1,1],
故要使sin(kx+kT)=Tsinkx .成立,只有T=
,下面再對T=1和T=-1兩種情況進行討論.
解:(1) 假設函數
屬于集合
, 則存在非零常數
, 對任意
, 有
成立,
即:
成立. 令
, 則
, 與題矛盾. 故
. …………5分
注:只要能判斷
即可得1分.
(2)
,
且
, 則對任意
, 有
,
設
, 則
,
…………8分
當
時,
,
故當
時,
. …………10分
3)當k=0時,f(x)=0,顯然f(x)=0∈M. …………11分
當k≠0時,因為f(x)=sinkx∈M,所以存在非零常數T,對任意x∈R,有
f(x+T)=T f(x)成立,即sin(kx+kT)=Tsinkx .
因為k≠0,且x∈R,所以kx∈R,kx+kT∈R,
于是sinkx ∈[-1,1],sin(kx+kT) ∈[-1,1],
故要使sin(kx+kT)=Tsinkx
.成立,只有T=
, …………12分
①當T=1時,sin(kx+k)=sinkx 成立,則k=2mπ, m∈Z .
②當T=-1時,sin(kx-k)=-sinkx 成立,
即sin(kx-k+π)= sinkx 成立,
則-k+π=2mπ, m∈Z ,即k=-(2m-1)π, m∈Z . …………13分
綜合得,實數k的取值范圍是{k|k= nπ, n∈Z} …………14分
科目:高中數學 來源: 題型:
| 3 |
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
查看答案和解析>>
科目:高中數學 來源: 題型:
(本小題滿分14分)設橢圓C1的方程為
(a>b>0),曲線C2的方程為y=
,且曲線C1與C2在第一象限內只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數f(a)=min{g(a), S(a)}的表達式。
查看答案和解析>>
科目:高中數學 來源:2011年江西省撫州市教研室高二上學期期末數學理卷(A) 題型:解答題
(本小題滿分14分)
已知
=2,點(
)在函數
的圖像上,其中
=
.
(1)證明:數列
}是等比數列;
(2)設
,求
及數列{
}的通項公式;
(3)記
,求數列{
}的前n項和
,并證明
.
查看答案和解析>>
科目:高中數學 來源:2015屆山東省威海市高一上學期期末考試數學試卷(解析版) 題型:解答題
(本小題滿分14分)
某網店對一應季商品過去20天的銷售價格及銷售量進行了監測統計發現,第
天(
)的銷售價格(單位:元)為
,第
天的銷售量為
,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額
關于第
天的函數關系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年廣東省高三下學期第一次月考文科數學試卷(解析版) 題型:解答題
(本小題滿分14分)已知
的圖像在點
處的切線與直線
平行.
⑴ 求
,
滿足的關系式;
⑵ 若
上恒成立,求
的取值范圍;
⑶ 證明:
(
)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com