中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知函數

(1)若函數y=f(x)的圖象切x軸于點(2,0),求a、b的值;

(2)設函數y="f(x)" 的圖象上任意一點的切線斜率為k,試求的充要條件;(3)若函數y=f(x)的圖象上任意不同的兩點的連線的斜率小于1,求證

 

【答案】

(1);(2);(3))設,即,對恒成立,

,對恒成立即恒成立,解得

【解析】

試題分析:(1) 

       …………………………2分

(2)k=

對任意的,即對任意的恒成立……3分

等價于對任意的恒成立。…………………………4分

令g(x)=,h(x)=

    ………………………………5分

,當且僅當時“=”成立,…………6分

h(x)=在(0,1)上為增函數,h(x)max<2    ……………………7分

所以    …………………………………………………………………8分

(3)設……9分

,對恒成立   ……………………10分

,對恒成立

恒成立    ……………………11分

解得        …………………12分

考點:導數的幾何意義;利用倒數研究曲線的切線方程;

點評:本題主要考查了利用導數研究曲線上某點切線方程,以及導數的幾何意義,同時考查了恒成立問題和轉化的數學思想,是一道綜合題,有一定的難點.

 

練習冊系列答案
相關習題

科目:高中數學 來源:2013-2014學年河北衡水中學高三上學期期中考試文科數學試卷(解析版) 題型:解答題

已知函數

(1)當時,求函數的單調區間;

(2)當函數自變量的取值區間與對應函數值的取值區間相同時,這樣的區間稱為函數的保值區間。設,試問函數上是否存在保值區間?若存在,請求出一個保值區間;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數數學公式
(Ⅰ) 若f(x)在[1,+∞)上單調遞增,求a的取值范圍;
(Ⅱ)若定義在區間D上的函數y=f(x)對于區間D上的任意兩個值x1、x2總有以下不等式數學公式成立,則稱函數y=f(x)為區間D上的“凹函 數”.試證當a≤0時,f(x)為“凹函數”.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數

(1)若函數在[l,+∞]上是增函數,求實數的取值范圍。

(2)若=一的極值點,求在[l,]上的最大值:

(3)在(2)的條件下,是否存在實數b,使得函數g()=b的圖像與函的圖像恰有3個交點,若存在,求出實數b的取值范圍:若不存在,試說明理由。

查看答案和解析>>

科目:高中數學 來源:2008-2009學年廣東省韶關市田家炳中學、乳源高級中學聯考高二(下)期中數學試卷(理科)(解析版) 題型:解答題

已知函數
(Ⅰ) 若f(x)在[1,+∞)上單調遞增,求a的取值范圍;
(Ⅱ)若定義在區間D上的函數y=f(x)對于區間D上的任意兩個值x1、x2總有以下不等式成立,則稱函數y=f(x)為區間D上的“凹函 數”.試證當a≤0時,f(x)為“凹函數”.

查看答案和解析>>

科目:高中數學 來源:2007-2008學年廣東省華南師大附中高三綜合測試數學試卷3(理科)(解析版) 題型:解答題

已知函數
(Ⅰ) 若f(x)在[1,+∞)上單調遞增,求a的取值范圍;
(Ⅱ)若定義在區間D上的函數y=f(x)對于區間D上的任意兩個值x1、x2總有以下不等式成立,則稱函數y=f(x)為區間D上的“凹函 數”.試證當a≤0時,f(x)為“凹函數”.

查看答案和解析>>

同步練習冊答案