中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
給出下列三個命題:
①函數y=
1
2
ln
1-cos x
1+cos x
與y=lntan
x
2
是同一函數;
②若函數y=f(x)與y=g(x)的圖象關于直線y=x對稱,則函數y=f(2x)與y=
1
2
g(x)的圖象也關于直線y=x對稱;
③如圖,在△ABC中,
AN
=
1
3
NC
,P是BN上的一點,若
AP
=m
AB
+
2
11
AC
,則實數m的值為
3
11

其中真命題是(  )
分析:①分別求出兩個函數的定義域,利用定義域和對應法則進行判斷.②根據函數關于直線y=x對稱的性質進行判斷.③利用向量共線的共線定理以及平面向量的定理進行判斷.
解答:解:①要使函數y=
1
2
ln
1-cos x
1+cos x
有意義,則
1-cos x
1+cos x
>0,即(1+cosx)(cosx-1)<0,解得-1<cosx<1,
∴x≠kπ,k∈Z,要使y=ln tan
x
2
有意義,則tan
x
2
>0
,即kπ<
x
2
<kπ+
π
2
,解得2kπ<x<2kπ+π,兩個函數的定義域不同,∴不是同一函數,即①錯誤.
②∵函數y=f(x)與y=g(x)的圖象關于直線y=x對稱,∴設(x,y)是y=f(2x)上的點,則2x=g(y),即x=
1
2
g(y)
,即數y=f(2x)關于y=x對稱函數為y=
1
2
g(x)
,∴②正確.
③∵
AN
=
1
3
NC
AP
=m
AB
+
2
11
AC
,設
BP
BN
,則
AP
=
AB
+
BP
=
AB
BN
=
AB
+λ(
AN
-
AB
)
=(1-λ)
AB
+
λ
4
AC

AP
=m
AB
+
2
11
AC

∴m=1-λ,且
λ
4
=
2
11
,解得λ=
8
11
,m=
3
11
.∴③正確.
故選:C.
點評:本題主要考查各種命題的真假判斷,涉及的知識點有函數的性質,平面向量的向量分解,綜合性較強.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

關于函數f(x)=sinx(cosx-sinx)+
1
2
,給出下列三個命題:
(1)函數f(x)在區間[
π
2
8
]
上是減函數;
(2)直線x=
π
8
是函數f(x)的圖象的一條對稱軸;
(3)函數f(x)的圖象可以由函數y=
2
2
sin2x
的圖象向左平移
π
4
而得到.
其中正確的命題序號是
 
.(將你認為正確的命題序號都填上)

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下列三個命題:
①函數y=
1
2
ln
1-cosx
1+cosx
y=lntan
x
2
是同一函數;
②若函數y=f(x)與y=g(x)的圖象關于直線y=x對稱,則函數y=f(2x)與y=
1
2
g(x)
的圖象也關于直線y=x對稱;
③若奇函數f(x)對定義域內任意x都有f(x)=f(2-x),則f(x)為周期函數.
其中真命題是(  )
A、①②B、①③C、②③D、②

查看答案和解析>>

科目:高中數學 來源: 題型:

14、已知直線m,n與平面α,β,給出下列三個命題:①若m∥α,n∥α,則m∥n;②若m∥α,n⊥α,則n⊥m;③若m⊥α,m∥β,則α⊥β其中正確命題的序號是
②③

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下列三個命題:
①函數y=ax(a>0且a≠1)與函數y=logax(a>0且a≠1)的定義域相同;
②函數y=x3與y=3x的值域相同;
③函數y=
1
2
+
1
2x-1
y=lg(x+
x2+1
)
都是奇函數.
其中正確命題的序號是
①③
①③
(把你認為正確的命題序號都填上).

查看答案和解析>>

科目:高中數學 來源: 題型:

(2000•上海)設有不同的直線a、b和不同的平面α、β、γ,給出下列三個命題:
(1)若a∥α,b∥α,則a∥b.
(2)若a∥α,a∥β,則α∥β.
(3)若a∥γ,β∥γ,則a∥β.
其中正確的個數是(  )

查看答案和解析>>

同步練習冊答案