已知
,
,圓
,一動圓在
軸右側與
軸相切,同時與圓
相外切,此動圓的圓心軌跡為曲線C,曲線E是以
,
為焦點的橢圓。
(1)求曲線C的方程;
(2)設曲線C與曲線E相交于第一象限點P,且
,求曲線E的標準方程;
(3)在(1)、(2)的條件下,直線
與橢圓E相交于A,B兩點,若AB的中點M在曲線C上,求直線
的斜率
的取值范圍。
(1)
;(2)![]()
【解析】
試題分析:(1)設動圓圓心的坐標為(x,y)(x>0),由動圓在y軸右側與y軸相切,同時與圓F2相外切,知|CF2|-x=1,由此能求出曲線C的方程.
(2)依題意,c=1,|PF1|=
,得xp=
,由此能求出曲線E的標準方程.
(3)設直線l與橢圓E交點A(x1,y1),B(x2,y2),A,B的中點M的坐標為(x0,y0),將A,B的坐標代入橢圓方程中,得3(x1-x2)(x1+x2)+4(y1-y2)(y1+y2)=0,由此能夠求出直線l的斜率k的取值范圍
解:(1)設動圓圓心的坐標為(x,y)(x>0)
因為動圓在y軸右側與y軸相切,同時與圓F2相外切,
所以|CF2|-x=1,…(1分)
∴(x-1)2+y2=x+1化簡整理得y2=4x,曲線C的方程為y2=4x(x>0); …(3分)(2)依題意,c=1,|PF1|=
,得xp=
,…(4分)∴|PF2|=
,又由橢圓定義得2a=|PF1|+|PF2|=4,a=2.…(5分)∴b2=a2-c2=3,所以曲線E的標準方程為
=1.…(6分)(3)設直線l與橢圓E交點A(x1,y1),B(x2,y2),A,B的中點M的坐標為(x0,y0),將A,B的坐標代入橢圓方程中,得3x12+4y12-12=0,3x22+4y22-12=0兩式相減得3(x1-x2)(x1+x2)+4(y1-y2)(y1+y2)=0,∴
=-
,…(7分)∵y02=4x0,∴直線AB的斜率k=
=-
y0,…(8分)由(2)知xp=
,∴yp2=4xp=
,∴yp=±
由題設-
<y0<
(y0≠0),∴-
<-
y0<
,…(10分)即-
<k<
(k≠0).…(12分)
考點:曲線方程
點評:本題考查曲線方程的求法,考查直線的斜率的取值范圍的求法,解題時要認真審題,注意點差法和等價轉化思想的合理運用.
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源:2013-2014學年江蘇省高三12月月考文科數學試卷(解析版) 題型:解答題
如圖所示,已知圓
為圓上一動點,點
是線段
的垂直平分線與直線
的交點.
![]()
(1)求點
的軌跡曲線
的方程;
(2)設點
是曲線
上任意一點,寫出曲線
在點
處的切線
的方程;(不要求證明)
(3)直線
過切點
與直線
垂直,點
關于直線
的對稱點為
,證明:直線
恒過一定點,并求定點的坐標.
查看答案和解析>>
科目:高中數學 來源:2012-2013學年重慶市高三上學期第四次月考理科數學試卷(解析版) 題型:解答題
( 本小題滿分12分)如圖所示,已知圓
為圓上一動點,點
在
上,點
在
上,且滿足
的軌跡為曲線
。
![]()
求曲線
的方程;
若過定點F(0,2)的直線交曲線
于不同的兩點
(點
在點
之間),且滿足
,求
的取值范圍。
查看答案和解析>>
科目:高中數學 來源:2010-2011學年云南省高三第二次月考理科數學卷 題型:解答題
(本小題滿分12分)如圖所示,已知圓
為圓上一動點,點P在AM上,點N在CM上,且滿足
,點N的軌跡為曲線E。
(Ⅰ)求曲線E的方程;
(Ⅱ)若過定點F(0,2)的直線交曲線E于不同的兩點G、H(點G在點F、H之間),且滿足
的取值范圍。
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com