中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知向量a=(2cos,tan(+)),b=(sin(+),tan(-)),令(x)=a·b.求函數f(x)的最大值,最小正周期,并寫出f(x)在[0,π]上的單調區間.

解:f(x)=a·b=cossin(+)+tan(-)tan(-)

=cos (sin+cos)+

=2sincos+2cos2-1

=sinx+cosx=sin(x+).

所以f(x)的最大值為,最小正周期為2π,f(x)在[0,]上單調增加,[,π]上單調減少.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知向量
a
=(2cosα,2sinα),
b
=(3cosβ,3sinβ)
,若向量
a
b
的夾角為60°,求cos(α-β)的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(2cosθ,2sinθ)
θ∈(
π
2
,π),
b
=(0,-1)
,則向量
a
b
的夾角為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(2cosθ,1),
b
=(sinθ+cosθ,1),- 
π
2
<θ<
π
2

(I)若
a
b
,求θ的值
(II)設f(θ)=
a
b
,求函數f(θ)的最大值及單調遞增區間.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(2cosωx,1),
b
=(sinωx+cosωx,-1)
,(ω∈R,ω>0),設函數f(x)=
a
b
(x∈R)
,若f(x)的最小正周期為
π
2

(1)求ω的值;
(2)求f(x)的單調區間.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2010•馬鞍山模擬)已知向量
a
=(2cos,2sinx)
,向量
b
=(
3
cosx,-cosx)
,函數f(x)=
a
b
-
3

(1)求函數f(x)(2)的最小正周期;
(3)求函數f(x)(4)的單調遞增區間;
(5)求函數f(x)(6)在區間[
π
12
12
]
(7)上的值域.

查看答案和解析>>

同步練習冊答案