中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知橢圓G:
x24
+y2=1,過點(m,0)作圓x2+y2=1的切線l交橢圓G于A、B兩點.
(1)求橢圓G的焦點坐標和離心率;
(2)當m變化時,求S△OAB的最大值.
分析:(1)根據橢圓方程,即可求橢圓G的焦點坐標和離心率;
(2)由題意知,|m|≥1,分類討論:當m=±1時,|AB|=
3
;當|m|>1時,設l的方程代入橢圓方程,利用韋達定理,及l與圓x2+y2=1相切,可表示|AB|,利用基本不等式可求最值,從而可得結論.
解答:解:(1)橢圓G:
x2
4
+y2=1中,a=2,b=1,∴c=
a2-b2
=
3

∴橢圓G的焦點坐標為(±
3
,0),離心率e=
c
a
=
3
2

(2)由題意知,|m|≥1
當m=±1時,切線l的方程為x=±1,此時|AB|=
3

當|m|>1時,設l為y=k(x-m),代入橢圓方程可得(1+4k2)x2-8k2mx+4k2m2-4=0
設A、B的坐標分別為(x1,y1),(x2,y2),則x1+x2=
8k2m
1+4k2
,x1x2=
4k2m2-4
1+4k2

∵l與圓x2+y2=1相切,∴
|km|
k2+1
=1,即m2k2=k2+1
∴|AB|=
1+k2
×
(x1+x2)2-4x1x2
=
4
3
|m|
m2+3
=
4
3
|m|+
3
|m|
≤2(當且僅當m=±
3
時取等號)
∴|AB|的最大值為2,
∴S△OAB的最大值為
1
2
×2×1
=1
點評:本題考查橢圓的性質與標準方程,考查直線與橢圓的位置關系,考查弦長的計算,考查韋達定理的運用,正確運用韋達定理是關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知橢圓G:
x24
+y2=1
.過點(m,0)作圓x2+y2=1的切線I交橢圓G于A,B兩點.
(Ⅰ)求橢圓G的焦點坐標和離心率;
(Ⅱ)將|AB|表示為m的函數,并求|AB|的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•鄭州二模)已知橢圓C:
x2
4
+
y2
3
=1
的右焦點為F,左頂點為A,點P為曲線D上的動點,以PF為直徑的圓恒與y軸相切.
(Ⅰ)求曲線D的方程;
(Ⅱ)設O為坐標原點,是否存在同時滿足下列兩個條件的△APM?①點M在橢圓C上;②點O為APM的重心.若存在,求出點P的坐標;若不存在,說明理由.(若三角形ABC的三點坐標為A(x1,y1),B(x2,y2),C(x3,y3),則其重心G的坐標為(
x1+x2+x3
3
y1+y2+y3
3
))

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓G的中心在坐標原點,長軸在x軸上,離心率為
3
2
,且橢圓G上一點到其兩個焦點的距離之和為12,則橢圓G的方程為(  )

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓G:
x2
4
+y2=1,過點(m,0)作圓x2+y2=1的切線l交橢圓G于A、B兩點.
(1)求橢圓G的焦點坐標和離心率;
(2)當m變化時,求S△OAB的最大值.

查看答案和解析>>

同步練習冊答案