中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
在各項都為正數的等比數列{an}中,已知a3=4,前三項的和為28.
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)若數列{bn}滿足:bn=log2an,b1+b2+…+bn=Sn,求
S1
1
+
S2
2
+…+
Sn
n
取最大時n的值.
分析:(Ⅰ)設公比為q,由題設知
a1q2=4
a 1(1-q3)
1-q
=28
,解得a1=16,q=
1
2
,或a1=36,q=-
1
3
.(舍).由此能求數列{an}的通項公式.
(Ⅱ)bn=log2an=log2[32×(
1
2
)n ]
=5-n.Sn=4+3+2+…+(5-n)=
n(9-n)
2
.所以
Sn
n
=
9-n
2
S1
1
+
S2
2
+…+
Sn
n
=
9n
2
-
n(n+1)
2
=-
1
2
(n-4)2+8
.由此能求出
S1
1
+
S2
2
+…+
Sn
n
取最大時n的值.
解答:解:(Ⅰ)設公比為q,則有a3=4,前三項的和為28,
a1q2=4
a 1(1-q3)
1-q
=28

解得a1=16,q=
1
2
,或a1=36,q=-
1
3

∵等比數列{an}各項都為正數,
a1=36,q=-
1
3
不合題意,舍去.
a1=16,q=
1
2

an=16×(
1
2
)
n-1
=32×(
1
2
)
n

(Ⅱ)∵an=32×(
1
2
)
n

∴bn=log2an=log2[32×(
1
2
)n ]
=5-n.
Sn=b1+b2+…+bn=4+3+2+…+(5-n)
=
n(9-n)
2

Sn
n
=
9-n
2

S1
1
+
S2
2
+…+
Sn
n
=
9-1
2
+
9-2
2
+…+
9-n
2

=
9n
2
-
n(n+1)
2

=-(
1
2
n2-4n

=-
1
2
(n-4)2+8

∴n=4時,
S1
1
+
S2
2
+…+
Sn
n
取最大值8.
點評:本題主要考查了等比數列的性質.即在等比數列中,依次每k項之和仍成等比數列.解題時要認真審題,注意配方法的靈活運用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

3、在各項都為正數的等比數列{an}中,首項a1=3,前三項和為21,則a3+a4+a5=(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

11、在各項都為正數的等比數列{an}中,若a5•a6=9,則log3a1+log3a2+log3a3+…+log3a10等于(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

3、在各項都為正數的等比數列{an}中,a1=3,前三項的和等于21,則a4+a5+a6=(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

在各項都為正數的等比數列{an}中,若a5a6=
3
,則log3a1+log3a2+…+log3a10=
5
2
5
2

查看答案和解析>>

同步練習冊答案