已知點(diǎn)
在雙曲線
上,且雙曲線的一條漸近線的方程是
.
(1)求雙曲線
的方程;
(2)若過點(diǎn)
且斜率為
的直線
與雙曲線
有兩個(gè)不同交點(diǎn),求實(shí)數(shù)
的取值范圍;
(3)設(shè)(2)中直線
與雙曲線
交于
兩個(gè)不同點(diǎn),若以線段
為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),求實(shí)數(shù)
的值.
(1)
;(2)
;(3)
.
解析試題分析:(1)要求雙曲線的標(biāo)準(zhǔn)方程,必須找到關(guān)于
的兩個(gè)等式,題中一條漸近線方程為
,說明
,這是一個(gè)等式,點(diǎn)
在雙曲線上,那么此點(diǎn)坐標(biāo)適合雙曲線方程,代入進(jìn)去又可得到一個(gè)等式,這樣可解得
;(2)直線與雙曲線有兩個(gè)不同的交點(diǎn),直接把直線方程與雙曲線方程聯(lián)立方程組,此方程組有兩解,方法是消去一個(gè)元
,得到關(guān)于
的二次方程,此方程是二次方程有兩個(gè)不等的實(shí)根,則
;(3)題設(shè)條件說明
,如果設(shè)
,則有
,
可用
表示出來,而
在(2)中可用
表示出來,代入剛才的等式,得到
的方程,可解得
.
試題解析:(1)由題知,有![]()
解得![]()
因此,所求雙曲線
的方程是
.
(2)∵直線
過點(diǎn)
且斜率為
,
∴直線
:
.
聯(lián)立方程組
得
.
又直線
與雙曲線
有兩個(gè)不同交點(diǎn),
∴![]()
解得
.
(3)設(shè)交點(diǎn)為
,由(2)可得![]()
又以線段
為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),
因此,
為坐標(biāo)原點(diǎn)).
于是,
即
,
,
,解得
.
又
滿足
,且
,
所以,所求實(shí)數(shù)
.
考點(diǎn):(1)雙曲線的標(biāo)準(zhǔn)方程;(2)直線與雙曲線有兩個(gè)交點(diǎn)問題;(3)兩直線垂直與圓錐網(wǎng)線綜合題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
,過點(diǎn)
且離心率為
.
求橢圓
的方程;
已知
是橢圓
的左右頂點(diǎn),動(dòng)點(diǎn)
滿足
,連接
角橢圓于點(diǎn)
,在
軸上是否存在異于點(diǎn)
的定點(diǎn)
,使得以
為直徑的圓經(jīng)過直線
和直線
的交點(diǎn),若存在,求出
點(diǎn),若不存在,說明理由.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分15分)
已知橢圓C:+=1
的離心率為,左焦點(diǎn)為F(-1,0),
(1) 設(shè)A,B分別為橢圓的左、右頂點(diǎn),過點(diǎn)F且斜率為k的直線L與橢圓C交于M,N兩點(diǎn),若
,求直線L的方程;
(2)橢圓C上是否存在三點(diǎn)P,E,G,使得S△OPE=S△OPG=S△OEG=?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在
軸上的橢圓過點(diǎn)
,且它的離心率
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)與圓
相切的直線
交橢圓于
兩點(diǎn),若橢圓上一點(diǎn)
滿足
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線C的頂點(diǎn)在原點(diǎn),開口向右,過焦點(diǎn)且垂直于拋物線對稱軸的弦長為2,過C上一點(diǎn)A作兩條互相垂直的直線交拋物線于P,Q兩點(diǎn). ![]()
(1)若直線PQ過定點(diǎn)
,求點(diǎn)A的坐標(biāo);
(2)對于第(1)問的點(diǎn)A,三角形APQ能否為等腰直角三角形?若能,試確定三角形APD的個(gè)數(shù);若不能,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的離心率為
,以原點(diǎn)為圓心,橢圓短半軸長為半徑的圓與直線
相切.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)過右焦點(diǎn)
作斜率為
的直線
交曲線
于
、
兩點(diǎn),且
,又點(diǎn)
關(guān)于原點(diǎn)
的對稱點(diǎn)為點(diǎn)
,試問
、
、
、
四點(diǎn)是否共圓?若共圓,求出圓心坐標(biāo)和半徑;若不共圓,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的離心率為
,以原點(diǎn)
為圓心,橢圓的短半軸長為半徑的圓與直線
相切。
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)若直線
與橢圓
相交于
、
兩點(diǎn),且
,試判斷
的面積是否為定值?若為定值,求出定值;若不為定值,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的短半軸長為
,動(dòng)點(diǎn)![]()
在直線
(
為半焦距)上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求以
為直徑且被直線
截得的弦長為
的圓的方程;
(3)設(shè)
是橢圓的右焦點(diǎn),過點(diǎn)
作
的垂線與以
為直徑的圓交于點(diǎn)
,
求證:線段
的長為定值,并求出這個(gè)定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖;.已知橢圓C:
的離心率為
,以橢圓的左頂點(diǎn)T為圓心作圓T:
設(shè)圓T與橢圓C交于點(diǎn)M、N.![]()
(1)求橢圓C的方程;
(2)求
的最小值,并求此時(shí)圓T的方程;
(3)設(shè)點(diǎn)P是橢圓C上異于M,N的任意一點(diǎn),且直線MP,NP分別與
軸交于點(diǎn)R,S,O為坐標(biāo)原點(diǎn). 試問;是否存在使
最大的點(diǎn)P,若存在求出P點(diǎn)的坐標(biāo),若不存在說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com